On the Poincar{e} constant of log-concave measures


Abstract in English

The goal of this paper is to push forward the study of those properties of log-concave measures that help to estimate their Poincar{e} constant. First we revisit E. Milmans result [40] on the link between weak (Poincar{e} or concentration) inequalities and Cheegers inequality in the logconcave cases, in particular extending localization ideas and a result of Latala, as well as providing a simpler proof of the nice Poincar{e} (dimensional) bound in the inconditional case. Then we prove alternative transference principle by concentration or using various distances (total variation, Wasserstein). A mollification procedure is also introduced enabling, in the logconcave case, to reduce to the case of the Poincar{e} inequality for the mollified measure. We finally complete the transference section by the comparison of various probability metrics (Fortet-Mourier, bounded-Lipschitz,...).

Download