No Arabic abstract
Detailed mapping of the distributions and kinematics of gases in cometary comae at radio wavelengths can provide fundamental advances in our understanding of cometary activity and outgassing mechanisms. Furthermore, the measurement of molecular abundances in comets provides new insights into the chemical composition of some of the Solar Systems oldest and most primitive materials. Here we investigate the opportunities for significant progress in cometary science using a very large radio interferometer. The ngVLA concept will enable detection and mapping of a range of key coma species in the 1.2-116 GHz range, and will allow for the first time, high-resolution mapping of the fundamental cometary molecules OH and NH$_3$. The extremely high angular resolution and continuum sensitivity of the proposed ngVLA will also allow the possibility of imaging thermal emission from the nucleus itself, as well as large dust/ice grains in the comae, of comets passing within $sim1$ au of Earth.
The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of $sim10^{5},M_odot$. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations of a $zsim4.5$ gas rich star-forming galaxy. Using the DESPOTIC radiative transfer code that encompasses simultaneous thermal, chemical, and statistical equilibrium in calculating the molecular and atomic level transitions of CO from ALMA for comparison. We find that observations of CO(1-0) are especially important for tracing the systemic redshift of the galaxy and the total mass of the well-shielded molecular gas reservoir, while even CO(2-1) can predominantly trace denser gas regions distinct from CO(1-0). The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies of CO(1-0) routine at $zsim2-5$.
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next decade. Building on the superb cm observing conditions and existing infrastructure of the VLA site in the U.S. Southwest, the ngVLA is envisaged to be an interferometric array with more than 10 times the sensitivity and spatial resolution of the current VLA and ALMA, operating at frequencies spanning $sim1.2 - 116$,GHz with extended baselines reaching across North America. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: (1) unveil the formation of Solar System analogues; (2) probe the initial conditions for planetary systems and life with astrochemistry; (3) characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; (4) use pulsars in the Galactic center as fundamental tests of gravity; and (5) understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.
The next-generation Very Large Array (ngVLA) is an astronomical observatory planned to operate at centimeter wavelengths (25 to 0.26 centimeters, corresponding to a frequency range extending from 1.2 to 116 GHz). The observatory will be a synthesis radio telescope constituted of approximately 244 reflector antennas each of 18 meters diameter, and 19 reflector antennas each of 6 meters diameter, operating in a phased or interferometric mode. We provide a technical overview of the Reference Design of the ngVLA. This Reference Design forms a baseline for a technical readiness assessment and the construction and operations cost estimate of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing are presented.
Observations with modern radio telescopes have revealed that classical novae are far from the simple, spherically symmetric events they were once assumed to be. It is now understood that novae provide excellent laboratories to study several astrophysical properties including binary interactions, stellar outflows, and shock physics. The ngVLA will provide unprecedented opportunities to study these events. It will enable us to observe more distant and fainter novae than we can today. It will allow us to simultaneously resolve both the thermal and non-thermal components in the ejecta. Finally, monitoring novae with the ngVLA will reveal the evolution of the ejecta in better detail than is possible with any current instrument.
Episodic accretion may be a common occurrence in the evolution of young pre-main sequence stars and has important implications for our understanding of star and planet formation. Many fundamental aspects of what drives the accretion physics, however, are still unknown. The ngVLA will be a key tool in understanding the nature of these events. The high spatial resolution, broad spectral coverage, and unprecedented sensitivity will allow for the detailed analysis of outburst systems. The proposed frequency range of the ngVLA allows for observations of the gas, dust, and non-thermal emission from the star and disk.