Do you want to publish a course? Click here

Fermionic Retroreflection, Hole Jets and Magnetic Steering in 2D Electron Systems

132   0   0.0 ( 0 )
 Added by Leonid Levitov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron interactions are usually probed indirectly, through their impact on transport coefficients. Here we describe a direct scheme that, in principle, gives access to the full angle dependence of carrier scattering in 2D Fermi gases. The latter is particularly interesting, because, due to the dominant role of head-on collisions, carrier scattering generates tightly focused fermionic jets. We predict a jet-dominated signal for the magnetic steering geometry, that appears at classically weak $B$-fields, much lower than the free-particle focusing fields. The effect is anti-Lorentz in sign, producing a peak at the field polarity for which the free-particle focusing does not occur. The steering signal measured vs. $B$ yields detailed information on the angular structure of fermionic jets.



rate research

Read More

338 - Bo E. Sernelius 2014
We present a variety of methods to derive the Casimir interaction in planar systems containing two-dimensional layers. Examples where this can be of use is graphene, graphene-like layers and two-dimensional electron gases. We present results for two free standing layers and for one layer above a substrate. The results can easily be extended to systems with a larger number of layers.
The lifetime of two dimensional electrons in GaAs quantum wells, placed in weak quantizing magnetic fields, is measured using a simple transport method in broad range of temperatures from 0.3 K to 20 K. The temperature variations of the electron lifetime are found to be in good agreement with conventional theory of electron-electron scattering in 2D systems.
The electron tunneling is experimentally studied between two-dimensional electron gases (2DEGs) formed in a single-doped-barrier heterostructure in the magnetic fields directed perpendicular to the 2DEGs planes. It is well known that the quantizing magnetic field induces the Coulomb pseudogap suppressing the electron tunneling at Fermi level. In this paper we firstly present the experimental results revealing the pseudogap in the electron tunneling assisted by elastic electron scattering on disorder.
Giant-amplitude oscillations in dc magnetoresistance of a high-mobility two-dimensional electron system can be induced by millimeterwave irradiations, leading to zero-resistance states at the oscillation minima. Following a brief overview of the now well-known phenomenon, this paper reports on aspects of more recent experiments on the subject. These are: new zero-resistance states associated with multi-photon processes; suppression of Shubnikov-de Haas oscillations by high-frequency microwaves; and microwave photoconductivity of a high-mobility two-dimensional hole system.
We put forward a concept to create highly collimated, non-dispersive electron beams in pseudo-relativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic pn junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا