No Arabic abstract
We announce the discovery of two planetary companions orbiting around the low mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052 (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES radial velocity observations in the visual channel as part of its survey for exoplanets around M dwarfs. In the case of GJ 1265, CARMENES observations were complemented with publicly available Doppler measurements from HARPS. The datasets reveal one planetary companion for each star that share very similar properties: minimum masses of $8.0pm0.5$ M$_{oplus}$ and $7.4pm0.5$ M$_{oplus}$ in low-eccentricity orbits with periods of $3.023pm0.001$ d and $3.651pm0.001$ d for GJ 3779 b and GJ 1265 b, respectively. The periodic signals around three days found in the radial velocity data have no counterpart in any spectral activity indicator. Besides, we collected available photometric data for the two host stars, which confirm that the additional Doppler variations found at periods around 95 d can be attributed to the rotation of the stars. The addition of these planets in a mass-period diagram of known planets around M dwarfs suggests a bimodal distribution with a lack of short-period low-mass planets in the range of 2-5 M$_{oplus}$. It also indicates that super-Earths (> 5 M$_{oplus}$) currently detected by radial velocity and transit techniques around M stars are usually found in systems dominated by a single planet.
We announce the discovery of two planets orbiting the M dwarfs GJ 251 ($0.360pm0.015$ M$_odot$) and HD 238090 ($0.578pm0.021$ M$_odot$) based on CARMENES radial velocity (RV) data. In addition, we independently confirm with CARMENES data the existence of Lalande 21185 b, a planet that has recently been discovered with the SOPHIE spectrograph. All three planets belong to the class of warm or temperate super-Earths and share similar properties. The orbital periods are 14.24 d, 13.67 d, and 12.95 d and the minimum masses are $4.0pm0.4$ $M_oplus$, $6.9pm0.9$ $M_oplus$, and $2.7pm0.3$ $M_oplus$ for GJ 251 b, HD 238090 b, and Lalande 21185 b, respectively. Based on the orbital and stellar properties, we estimate equilibrium temperatures of $351.0pm1.4$ K for GJ 251 b, $469.6pm2.6$ K for HD 238090 b, and $370.1pm6.8$ K for Lalande 21185 b. For the latter we resolve the daily aliases that were present in the SOPHIE data and that hindered an unambiguous determination of the orbital period. We find no significant signals in any of our spectral activity indicators at the planetary periods. The RV observations were accompanied by contemporaneous photometric observations. We derive stellar rotation periods of $122.1pm2.2$ d and $96.7pm3.7$ d for GJ 251 and HD 238090, respectively. The RV data of all three stars exhibit significant signals at the rotational period or its first harmonic. For GJ 251 and Lalande 21185, we also find long-period signals around 600 d, and 2900 d, respectively, which we tentatively attribute to long-term magnetic cycles. We apply a Bayesian approach to carefully model the Keplerian signals simultaneously with the stellar activity using Gaussian process regression models and extensively search for additional significant planetary signals hidden behind the stellar activity.
We report on radial velocity time series for two M0.0V stars, GJ338B and GJ338A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We aim to explore the presence of small planets in tight orbits using the spectroscopic radial velocity technique. We obtained 159 and 70 radial velocity measurements of GJ338B and A, respectively, with the CARMENES visible channel. We also compiled additional relative radial velocity measurements from the literature and a collection of astrometric data that cover 200 a of observations to solve for the binary orbit. We found dynamical masses of 0.64$pm$0.07M$_odot$ for GJ338B and 0.69$pm$0.07M$_odot$ for GJ338A. The CARMENES radial velocity periodograms show significant peaks at 16.61$pm$0.04 d (GJ338B) and 16.3$^{+3.5}_{-1.3}$ d (GJ338A), which have counterparts at the same frequencies in CARMENES activity indicators and photometric light curves. We attribute these to stellar rotation. GJ338B shows two additional, significant signals at 8.27$pm$0.01 and 24.45$pm$0.02 d, with no obvious counterparts in the stellar activity indices. The former is likely the first harmonic of the stars rotation, while we ascribe the latter to the existence of a super-Earth planet with a minimum mass of 10.27$^{+1.47}_{-1.38}$$M_{oplus}$ orbiting GJ338B. GJ338B b lies inside the inner boundary of the habitable zone around its parent star. It is one of the least massive planets ever found around any member of stellar binaries. The masses, spectral types, brightnesses, and even the rotational periods are very similar for both stars, which are likely coeval and formed from the same molecular cloud, yet they differ in the architecture of their planetary systems.
The interaction between Earth-like exoplanets and the magnetic field of low-mass host stars are considered to produce weak emission signals at radio frequencies. A study using LOFAR data announced the detection of radio emission from the mid M-type dwarf GJ 1151 that could potentially arise from a close-in terrestrial planet. Recently, the presence of a 2.5-Me planet orbiting GJ 1151 with a 2-day period has been claimed using 69 radial velocities (RVs) from the HARPS-N and HPF instruments. We have obtained 70 new high-precision RV measurements in the framework of the CARMENES M-dwarf survey and use these data to confirm the presence of the claimed planet and to place limits on possible planetary companions in the GJ 1151 system. We analyse the periodicities present in the combined RV data sets from all three instruments and calculate the detection limits for potential planets in short-period orbits. We cannot confirm the recently-announced candidate planet and conclude that the 2-day signal in the HARPS-N and HPF data sets is most probably produced by a long-term RV variability possibly arising from an outer planetary companion yet unconstrained. We calculate a 99.9% significance detection limit of 1.50 ms-1 in the RV semi-amplitude, which places upper limits of 0.7 Me and 1.2 Me to the minimum masses of any potential exoplanets with orbital periods of 1 and 5 days, respectively.
Context. GJ 1148 is an M-dwarf star hosting a planetary system composed of two Saturn-mass planets in eccentric orbits with periods of 41.38 and 532.02 days. Aims. We reanalyze the orbital configuration and dynamics of the GJ 1148 multi-planetary system based on new precise radial velocity (RV) measurements taken with CARMENES. Methods. We combined new and archival precise Doppler measurements from CARMENES with those available from HIRES for GJ 1148 and modeled these data with a self-consistent dynamical model. We studied the orbital dynamics of the system using the secular theory and direct N-body integrations. The prospects of potentially habitable moons around GJ 1148 b were examined. Results. The refined dynamical analyses show that the GJ 1148 system is long-term stable in a large phase-space of orbital parameters with an orbital configuration suggesting apsidal alignment, but not in any particular high-order mean-motion resonant commensurability. GJ 1148 b orbits inside the optimistic habitable zone (HZ). We find only a narrow stability region around the planet where exomoons can exist. However, in this stable region exomoons exhibit quick orbital decay due to tidal interaction with the planet. Conclusions. The GJ 1148 planetary system is a very rare M-dwarf planetary system consisting of a pair of gas giants, the inner of which resides in the HZ. We conclude that habitable exomoons around GJ 1148 b are very unlikely to exist.
We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m_b = 30.8 +/- 1.5 M_earth , R_b = 4.7 +/- 0.3 R_earth ) located in the hot Neptune desert. Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer, and ground-based photometry from MuSCAT2, TRAPPIST- South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TUBITAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf (T_eff = 3950 +/- 51 K) with a mass of 0.59 +/- 0.02 M_sun and a radius of 0.58 +/- 0.02 R_sun. From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33 d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained.