Do you want to publish a course? Click here

Science with an ngVLA: Radio Continuum Emission from Galaxies: An Accounting of Energetic Processes

104   0   0.0 ( 0 )
 Added by Eric Murphy
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio continuum observations have proven to be a workhorse in our understanding of the star formation process (i.e., stellar birth and death) from galaxies both in the nearby universe and out to the highest redshifts. In this article we focus on how the ngVLA will transform our understanding of star formation by enabling one to map and decompose the radio continuum emission from large, heterogeneous samples of nearby galaxies on $gtrsim 10$,pc scales to conduct a proper accounting of the energetic processes powering it. At the discussed sensitivity and angular resolution, the ngVLA will simultaneously be able to create maps of current star formation activity at $sim$100,pc scales, as well as detect and characterize (e.g., size, spectral shape, density, etc.) discrete H{sc ii} regions and supernova remnants on 10,pc scales in galaxies out to the distance of the Virgo cluster. Their properties can then be used to see how they relate to the local and global ISM and star formation conditions. Such investigations are essential for understanding the astrophysics of high-$z$ measurements of galaxies, allowing for proper modeling of galaxy formation and evolution.



rate research

Read More

The ngVLA will create a Galaxy-wide, volume-limited sample of HII regions; solve some long standing problems in the physics of HII regions; and provide an extinction-free star formation tracer in nearby galaxies.
Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Young, compact radio sources associated with accreting supermassive black holes (SMBHs) represent an important phase in the life cycles of jetted AGN for understanding AGN triggering and duty cycles. The superb sensitivity and resolution of the ngVLA, coupled with its broad frequency coverage, will provide exciting new insights into our understanding of the life cycles of radio AGN and their impact on galaxy evolution. The high spatial resolution of the ngVLA will enable resolved mapping of young radio AGN on sub-kiloparsec scales over a wide range of redshifts. With broad continuum coverage from 1 to 116 GHz, the ngVLA will excel at estimating ages of sources as old as $30-40$ Myr at $z sim 1$. In combination with lower-frequency ($ u < 1$ GHz) instruments such as ngLOBO and the Square Kilometer Array, the ngVLA will robustly characterize the spectral energy distributions of young radio AGN.
We consider the capabilities of ALMA and the ngVLA to detect and image the[CII] 158,$mu$m line from galaxies into the cosmic `dark ages ($z sim 10$ to 20). The [CII] line may prove to be a powerful tool in determining spectroscopic redshifts, and galaxy dynamics, for the first galaxies. In 40,hr, ALMA has the sensitivity to detect the integrated [CII] line emission from a moderate metallicity, active star-forming galaxy [$Z_A = 0.2,Z_{odot}$; star formation rate (SFR)= 5,$M_odot$,yr$^{-1}$], at $z = 10$ at a significance of 6$sigma$. The ngVLA will detect the integrated [CII] line emission from a Milky-Way like star formation rate galaxy ($Z_{A} = 0.2,Z_{odot}$, SFR = 1,$M_odot$,yr$^{-1}$), at $z = 15$ at a significance of 6$sigma$. Imaging simulations show that the ngVLA can determine rotation dynamics for active star-forming galaxies at $z sim 15$, if they exist. The [CII] detection rate in blind surveys will be slow (of order unity per 40,hr pointing.
Stars form in cold clouds of predominantly molecular (H2) gas. We are just beginning to understand how the formation, properties, and destruction of these clouds varies across the universe. In this chapter, we describe how the thermal line imaging capabilities of the proposed next generation Very Large Array (ngVLA) could make major contributions to this field. Looking at CO emission, the proposed ngVLA would be able to quickly survey the bulk properties of molecular clouds across the whole nearby galaxy population. This includes many unique very nearby northern targets (e.g., Andromeda) inaccessible to ALMA. Such surveys offer a main observational constraint on the formation, destruction, lifetime, and star formation properties of clouds. Targeting specific regions, the ngVLA will also be able to heavily resolve clouds in the nearest galaxies. This will allow detailed studies of the substructure and kinematics --- and so the internal physics --- of clouds across different chemical and dynamical environments.
Extraterrestrial amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth are present in meteoritic samples. More recently, glycine (NH$_2$CH$_2$COOH), the simplest amino acid, was detected by the Rosetta mission in comet 67P. Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of (pre)biotic molecules is woefully incomplete. This is largely because our knowledge of chemical inventories during the different stages of star and planet formation is incomplete. It is therefore imperative to solidify our accounting of the chemical inventories, especially of critical yet low-abundance species, in key regions and to use this knowledge to inform, expand, and constrain chemical models of these reactions. This is followed naturally by a requirement to understand the spatial distribution and temporal evolution of this inventory. Here, we briefly outline a handful of particularly-impactful use cases in which the ngVLA will drive the field forward.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا