No Arabic abstract
Trapped-ion quantum information processors offer many advantages for achieving high-fidelity operations on a large number of qubits, but current experiments require bulky external equipment for classical and quantum control of many ions. We demonstrate the cryogenic operation of an ion-trap that incorporates monolithically-integrated high-voltage CMOS electronics ($pm 8mathrm{V}$ full swing) to generate surface-electrode control potentials without the need for external, analog voltage sources. A serial bus programs an array of 16 digital-to-analog converters (DACs) within a single chip that apply voltages to segmented electrodes on the chip to control ion motion. Additionally, we present the incorporation of an integrated circuit that uses an analog switch to reduce voltage noise on trap electrodes due to the integrated amplifiers by over $50mathrm{dB}$. We verify the function of our integrated electronics by performing diagnostics with trapped ions and find noise and speed performance similar to those we observe using external control elements.
Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of the setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave system, and compare experimental measurements of the microwave near-fields with numerical simulations. Additionally, we present a method that utilizes oscillating magnetic-field gradients to detect micromotion induced by the ponderomotive radio-frequency potential in linear traps. Finally, we discuss the present limitations of microwave-driven two-ion entangling gates in our system.
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
We implement a two-qubit entangling M{o}lmer-S{o}rensen interaction by transporting two co-trapped $^{40}mathrm{Ca}^{+}$ ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.
Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mechanics that large quantum devices, such as masers or lasers, can be treated with the thermodynamic formalism. Remarkable progress has been made recently in the miniaturization of heat engines all the way to the single Brownian particle as well as to a single atom. However, despite several theoretical proposals, the implementation of heat machines in the fully quantum regime remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime, and demonstrate cooling below both the steady-state energy and the benchmark predicted by the classical thermodynamics treatment.
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$mu$m range along the trap axis at accuracies of better than 6~nm.