Do you want to publish a course? Click here

A note on locally elliptic actions on cube complexes

53   0   0.0 ( 0 )
 Added by Olga Varghese
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We deduce from Sageevs results that whenever a group acts locally elliptically on a finite dimensional CAT(0) cube complex, then it must fix a point. As an application, we give an example of a group G such that G does not have property (T), but G and all its finitely generated subgroups can not act without a fixed point on a finite dimensional CAT(0) cube complex, answering a question by Barnhill and Chatterji.



rate research

Read More

159 - Nir Lazarovich 2014
We provide a necessary and sufficient condition on a finite flag simplicial complex, L, for which there exists a unique CAT(0) cube complex whose vertex links are all isomorphic to L. We then find new examples of such CAT(0) cube complexes and prove that their automorphism groups are virtually simple. The latter uses a result, which we prove in the appendix, about the simplicity of certain subgroups of the automorphism group of a rank-one CAT(0) cube complex. This result generalizes previous results by Tits and by Haglund and Paulin.
We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindricity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.
289 - Aditi Kar , Michah Sageev 2015
Let $G$ be a group acting properly and essentially on an irreducible, non-Euclidean finite dimensional CAT(0) cube complex $X$ without fixed points at infinity. We show that for any finite collection of simultaneously inessential subgroups ${H_1, ldots, H_k}$ in $G$, there exists an element $g$ of infinite order such that $forall i$, $langle H_i, grangle cong H_i * langle grangle$. We apply this to show that any group, acting faithfully and geometrically on a non-Euclidean possibly reducible CAT(0) cube complex, has property $P_{naive}$ i.e. given any finite list ${g_1, ldots, g_k}$ of elements from $G$, there exists $g$ of infinite order such that $forall i$, $langle g_i, grangle cong langle g_i rangle *langle grangle$. This applies in particular to the Burger-Moses simple groups that arise as lattices in products of trees. The arguments utilize the action of the group on its Poisson boundary and moreover, allow us to summarise equivalent conditions for the reduced $C^*$-algebra of the group to be simple.
For each d we construct CAT(0) cube complexes on which Cremona groups rank d act by isometries. From these actions we deduce new and old group theoretical and dynamical results about Cremona groups. In particular, we study the dynamical behaviour of the irreducible components of exceptional loci, we prove regularization theorems, we find new constraints on the degree growth for non-regularizable birational transformations, and we show that the centralizer of certain birational transformations is small.
Suppose that $X=G/K$ is the quotient of a locally compact group by a closed subgroup. If $X$ is locally contractible and connected, we prove that $X$ is a manifold. If the $G$-action is faithful, then $G$ is a Lie group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا