Does VO$_2$ Host a Transient Monoclinic Metallic Phase?


Abstract in English

Ultrafast phase transitions induced by femtosecond light pulses present a new opportunity for manipulating the properties of materials. Understanding how these transient states are different from, or similar to, their thermal counterparts is key to determining how materials can exhibit properties that are not found in equilibrium. In this paper, we reexamine the case of the light-induced insulator-metal phase transition in the prototypical, strongly correlated material VO$_2$, for which a nonthermal Mott-Hubbard transition has been claimed. Here, we show that heat, even on the ultrafast timescale, plays a key role in the phase transition. When heating is properly accounted for, we find a single phase-transition threshold corresponding to the thermodynamic structural insulator-metal phase transition, and we find no evidence of a hidden transient Mott-Hubbard nonthermal phase. The interplay between the initial thermal state and the ultrafast transition may have implications for other transient states of matter.

Download