Convolutional Neural Networks (CNNs) traditionally encode translation equivariance via the convolution operation. Generalization to other transformations has recently received attraction to encode the knowledge of the data geometry in group convolution operations. Equivariance to rotation is particularly important for 3D image analysis due to the large diversity of possible pattern orientations. 3D texture is a particularly important cue for the analysis of medical images such as CT and MRI scans as it describes different types of tissues and lesions. In this paper, we evaluate the use of 3D group equivariant CNNs accounting for the simplified group of right-angle rotations to classify 3D synthetic textures from a publicly available dataset. The results validate the importance of rotation equivariance in a controlled setup and yet motivate the use of a finer coverage of orientations in order to obtain equivariance to realistic rotations present in 3D textures.