Various sign-posts of recent star-formation activity, such as water and methanol maser emission or magnetically active low-mass young stars, can be detected with Very Long Baseline Interferometry (VLBI) radio arrays. The extremely accurate astrometry already attainable with VLBI instruments implies that the trigonometric parallax and the proper motion of these objects can be measured to better than 1% for sources within a few hundred parsecs of the Sun, and better than 10% for objects at a few kiloparsecs. An ngVLA with baselines extending to several thousand km will have a sensitivity more than one order of magnitude better than current VLBI instruments, and will enable such highly accurate astrometric measurements to be performed throughout the Milky Way. This will provide a full six-dimensional view (three spatial and three velocity coordinates) of star-formation in the Galactic disk, and have a transformative impact on our understanding of both star-formation processes and Galactic structure.