The latitudinal distribution of starspots deviates from the solar pattern with increasing rotation rate. Numerical simulations of magnetic flux emergence and transport can help model the observed stellar activity patterns and the associated brightness variations. We set up a composite model for the processes of flux emergence and transport on Sun-like stars, to simulate stellar brightness variations for various levels of magnetic activity and rotation rates. Assuming that the distribution of magnetic flux at the base of the convection zone follows solar scaling relations, we calculate the emergence latitudes and tilt angles of bipolar regions at the surface for various rotation rates, using thin-flux-tube simulations. Taking these two quantities as input to a surface flux transport SFT model, we simulate the diffusive-advective evolution of the radial field at the stellar surface, including effects of active region nesting. As the rotation rate increases, (1) magnetic flux emerges at higher latitudes and an inactive gap opens around the equator, reaching a half-width of $20^circ$ for $8Omega_odot$, (2) the tilt angles of freshly emerged bipolar regions show stronger variations with latitude. Polar spots can form at $8Omega_odot$ by accumulation of follower-polarity flux from decaying bipolar regions. From $4Omega_odot$ to $8Omega_odot$, the maximum spot coverage changes from 3 to 20%, respectively, compared to 0.4% for the solar model. Nesting of activity can lead to strongly non-axisymmetric spot distributions. On Sun-like stars rotating at $8Omega_odot$ ($P_{rm rot}simeq 3$ days), polar spots can form, owing to higher levels of flux emergence rate and tilt angles. Defining spots by a threshold field strength yields global spot coverages that are roughly consistent with stellar observations.