Do you want to publish a course? Click here

Science with an ngVLA: Precision Gas-dynamical Mass Measurement of Supermassive Black Holes with the ngVLA

68   0   0.0 ( 0 )
 Added by Benjamin Boizelle
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Emission line observations of circumnuclear gas disks in the ALMA era have begun to resolve molecular gas tracer kinematics near supermassive black holes (BHs), enabling highly precise mass determination in the best cases. The ngVLA is capable of extremely high spatial resolution imaging of the CO(1-0) transition at 115 GHz for nearby galaxies. Furthermore, its high (anticipated) emission line sensitivity suggests this array can produce benchmark BH mass measurements. We discuss lessons learned from gas-dynamical modeling of recent ALMA data sets and also compare ALMA and ngVLA CO simulations of a dynamically cold disk. While only a fraction of all local galaxies likely possess sufficiently bright, regularly-rotating nuclear molecular gas, in such cases the ngVLA is expected to more efficiently resolve such emission arising at a projected 50-100 mas from the central BH.



rate research

Read More

The ngVLA will facilitate deep surveys capable of detecting the faint and compact signatures of accreting supermassive black holes (SMBHs) with masses below one million solar-masses hosted by low-mass ($< 10^9$ solar-masses) galaxies. This will provide important new insights on both the origins of supermassive black holes and the possible impact of active galactic nucleus-driven feedback in a currently unexplored mass regime.
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of volatile organic material across the planet and comet forming zones is of special interest. These are difficult to access in the disk midplane at IR and even millimeter wavelengths due to dust opacity, which can veil the midplane, low intrinsic molecular abundances due to efficient freeze-out, and, in the case of mid-sized organics, a mismatch between expected excitation temperatures and accessible line upper energy levels. At ngVLA wavelengths, the dust is optically thin, enabling observations into the planet forming disk midplane. ngVLA also has the requisite sensitivity. Using TW Hya as a case study, we show that ngVLA will be able to map out the distributions of diagnostic organics, such as CH3CN, in nearby protoplanetary disks.
The next-generation Very Large Array (ngVLA) is an astronomical observatory planned to operate at centimeter wavelengths (25 to 0.26 centimeters, corresponding to a frequency range extending from 1.2 to 116 GHz). The observatory will be a synthesis radio telescope constituted of approximately 244 reflector antennas each of 18 meters diameter, and 19 reflector antennas each of 6 meters diameter, operating in a phased or interferometric mode. We provide a technical overview of the Reference Design of the ngVLA. This Reference Design forms a baseline for a technical readiness assessment and the construction and operations cost estimate of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing are presented.
Gas density is widely believed to play a governing role in star formation. However, the exact role of density in setting the star formation rate remains debated. We also lack a general theory that explains how the gas density distribution in galaxies is set. The primary factor preventing the resolution of these issues is the limited number of observations of the gas density distribution across diverse environments. Centimeter- and millimeter-wave spectroscopy offer the most promising way forward in this field, but the key density-sensitive transitions are faint compared to the capabilities of current telescopes. In this chapter, we describe how a next-generation Very Large Array (ngVLA) represents the natural next step forward in this sensitivity-limited field. Such a facility would provide a crucial link between the `Milky Way and `Extragalactic views of star formation and dramatically advance our understanding of the drive and role of gas density in galaxies, building on current results from ALMA, NOEMA, the Green Bank Telescope, and other current facilities working in this area.
Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Young, compact radio sources associated with accreting supermassive black holes (SMBHs) represent an important phase in the life cycles of jetted AGN for understanding AGN triggering and duty cycles. The superb sensitivity and resolution of the ngVLA, coupled with its broad frequency coverage, will provide exciting new insights into our understanding of the life cycles of radio AGN and their impact on galaxy evolution. The high spatial resolution of the ngVLA will enable resolved mapping of young radio AGN on sub-kiloparsec scales over a wide range of redshifts. With broad continuum coverage from 1 to 116 GHz, the ngVLA will excel at estimating ages of sources as old as $30-40$ Myr at $z sim 1$. In combination with lower-frequency ($ u < 1$ GHz) instruments such as ngLOBO and the Square Kilometer Array, the ngVLA will robustly characterize the spectral energy distributions of young radio AGN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا