No Arabic abstract
Full quantum capability devices can provide secure communications, but they are challenging to make portable given the current technology. Besides, classical portable devices are unable to construct communication channels resistant to quantum computers. Hence, communication security on portable devices cannot be guaranteed. Semi-Quantum Communication (SQC) attempts to break the quandary by lowering the receivers required quantum capability so that secure communications can be implemented on a portable device. However, all SQC protocols have low qubit efficiency and complex hardware implementations. The protocols involving quantum entanglement require linear Entanglement Preservation Time (EPT) and linear quregister size. In this paper, we propose two new keyless SQC protocols that address the aforementioned weaknesses. They are named Economic Keyless Semi-Quantum Point-to-point Communication (EKSQPC) and Rate Estimation EKSQPC (REKSQPC). They achieve theoretically constant minimal EPT and quregister size, regardless of message length. We show that the new protocols, with low overhead, can detect Measure and Replay Attacks (MRAs). REKSQDC is tolerant to transmission impairments and environmental perturbations. The protocols are based on a new quantum message transmission operation termed Tele-Fetch. Like QKD, their strength depends on physical principles rather than mathematical complexity.
A series of recent works has shown that placing communication channels in a coherent superposition of alternative configurations can boost their ability to transmit information. Instances of this phenomenon are the advantages arising from the use of communication devices in a superposition of alternative causal orders, and those arising from the transmission of information along a superposition of alternative trajectories. The relation among these advantages has been the subject of recent debate, with some authors claiming that the advantages of the superposition of orders could be reproduced, and even surpassed, by other forms of superpositions. To shed light on this debate, we develop a general framework of resource theories of communication. In this framework, the resources are communication devices, and the allowed operations are (a) the placement of communication devices between the communicating parties, and (b) the connection of communication devices with local devices in the parties laboratories. The allowed operations are required to satisfy the minimal condition that they do not enable communication independently of the devices representing the initial resources. The resource-theoretic analysis reveals that the aforementioned criticisms on the superposition of causal orders were based on an uneven comparison between different types of quantum superpositions, exhibiting different operational features.
Extensive quantum error correction is necessary in order to scale quantum hardware to the regime of practical applications. As a result, a significant amount of decoding hardware is necessary to process the colossal amount of data required to constantly detect and correct errors occurring over the millions of physical qubits driving the computation. The implementation of a recent highly optimized version of Shors algorithm to factor a 2,048-bits integer would require more 7 TBit/s of bandwidth for the sole purpose of quantum error correction and up to 20,000 decoding units. To reduce the decoding hardware requirements, we propose a fault-tolerant quantum computing architecture based on surface codes with a cheap hard-decision decoder, the lazy decoder, combined with a sophisticated decoding unit that takes care of complex error configurations. Our design drops the decoding hardware requirements by several orders of magnitude assuming that good enough qubits are provided. Given qubits and quantum gates with a physical error rate $p=10^{-4}$, the lazy decoder drops both the bandwidth requirements and the number of decoding units by a factor 50x. Provided very good qubits with error rate $p=10^{-5}$, we obtain a 1,500x reduction in bandwidth and decoding hardware thanks to the lazy decoder. Finally, the lazy decoder can be used as a decoder accelerator. Our simulations show a 10x speed-up of the Union-Find decoder and a 50x speed-up of the Minimum Weight Perfect Matching decoder.
Extracting tomographic information about quantum states is a crucial task in the quest towards devising high-precision quantum devices. Current schemes typically require measurement devices for tomography that are a priori calibrated to a high precision. Ironically, the accuracy of the measurement calibration is fundamentally limited by the accuracy of state preparation, establishing a vicious cycle. Here, we prove that this cycle can be broken and the fundamental dependence on the measurement devices significantly relaxed. We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind tomography scheme with a classically efficient post-processing algorithm. We further improve the efficiency of our scheme by making use of the sparse structure of the calibrations. This is achieved by relaxing the blind quantum tomography problem to the task of de-mixing a sparse sum of low-rank quantum states. Building on techniques from model-based compressed sensing, we prove that the proposed algorithm recovers a low-rank quantum state and the calibration provided that the measurement model exhibits a restricted isometry property. For generic measurements, we show that our algorithm requires a close-to-optimal number measurement settings for solving the blind tomography task. Complementing these conceptual and mathematical insights, we numerically demonstrate that blind quantum tomography is possible by exploiting low-rank assumptions in a practical setting inspired by an implementation of trapped ions using constrained alternating optimization.
A $((k,n))$ quantum threshold secret sharing (QTS) scheme is a quantum cryptographic protocol for sharing a quantum secret among $n$ parties such that the secret can be recovered by any $k$ or more parties while $k-1$ or fewer parties have no information about the secret. Despite extensive research on these schemes, there has been very little study on optimizing the quantum communication cost during recovery. Recently, we initiated the study of communication efficient quantum threshold secret sharing (CE-QTS) schemes. These schemes reduce the communication complexity in QTS schemes by accessing $dgeq k$ parties for recovery; here $d$ is fixed ahead of encoding the secret. In contrast to the standard QTS schemes which require $k$ qudits for recovering each qudit in the secret, these schemes have a lower communication cost of $frac{d}{d-k+1}$ for $d>k$. In this paper, we further develop the theory of communication efficient quantum threshold schemes. Here, we propose universal CE-QTS schemes which reduce the communication cost for all $dgeq k$ simultaneously. We provide a framework based on ramp quantum secret sharing to construct CE-QTS and universal CE-QTS schemes. We give another construction for universal CE-QTS schemes based on Staircase codes. We derived a lower bound on communication complexity and show that our constructions are optimal. Finally, an information theoretic model is developed to analyse CE-QTS schemes and the lower bound on communication complexity is proved again using this model.
Simulating molecules is believed to be one of the early-stage applications for quantum computers. Current state-of-the-art quantum computers are limited in size and coherence, therefore optimizing resources to execute quantum algorithms is crucial. In this work, we develop the second quantization representation of the spatial-symmetries which are then transformed to their qubit operator representation. These qubit operator representations are used to reduce the number of qubits required for simulating molecules. We present our results for various molecules and elucidate a formal connection of this work with a previous technique that analyzed generic $Z_2$ Pauli symmetries.