We review extragalactic $gamma$-ray propagation models with emphasis on the electromagnetic (EM) cascade process in the magnetized expanding Universe. We consider cascades initiated by primary protons of ultra-high energy accelerated by blazars and show that the observable spectrum is similar to the universal spectrum of a purely EM cascade. We also present a detailed calculation of the observable angular distribution for the case of EM cascades developing from relatively nearby (<20 Mpc) sources. Finally, we calculate the point-like source differential sensitivity of a novel liquid Argon time projection chamber $gamma$-ray telescope and show that its sensitivity is several times better than the Fermi LAT sensitivity in the 100 MeV -- 100 GeV energy range.
The binary system $eta$ Carinae is a unique laboratory in which to study particle acceleration to high energies under a wide range of conditions, including extremely high densities around periastron. To date, no consensus has emerged as to the origin of the GeV $gamma$-ray emission in this important system. With a re-analysis of the full Fermi-LAT dataset for $eta$ Carinae we show that the spectrum is consistent with a pion decay origin. A single population leptonic model connecting the X-ray to $gamma$-ray emission can be ruled out. Here, we revisit the physical model of Ohm et al. (2015), based on two acceleration zones associated to the termination shocks in the winds of both stars. We conclude that inverse-Compton emission from in-situ accelerated electrons dominates the hard X-ray emission detected with NuSTAR at all phases away from periastron, and pion-decay from shock accelerated protons is the source of the $gamma$-ray emission. Very close to periastron there is a pronounced dip in the hard X-ray emission, concomitant with the repeated disappearance of the thermal X-ray emission, which we interpret as being due to the suppression of significant electron acceleration in the system. Within our model, the residual emission seen by NuSTAR at this phase can be accounted for with secondary electrons produced in interactions of accelerated protons, in agreement with the variation in pion-decay $gamma$-ray emission. Future observations with H.E.S.S., CTA and NuSTAR should confirm or refute this scenario.
The Tibet ASgamma experiment just reported their measurement of sub-PeV diffuse gamma ray emission from the Galactic disk, with the highest energy up to 957 TeV. These gamma-rays are most likely the hadronic origin by cosmic ray interaction with interstellar gas in the Galaxy. This measurement provides direct evidence to the hypothesis that the Galactic cosmic rays can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum within cosmic rays diffusive propagation model. We find there is a tension between the sub-PeV diffuse gamma rays and the local cosmic ray spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local cosmic-ray flux than measurement in the knee region. We further calculate the PeV neutrino flux from the cosmic ray propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic neutrinos only account for less than ~15% of observed flux, most of which are still from extragalactic sources.
Observations from the radio to the gamma-ray wavelengths indicate that supernova remnant (SNR) shocks are sites of effective particle acceleration. It has been proposed that the presence of dense clumps in the environment where supernovae explode might have a strong impact in shaping the hadronic gamma-ray spectrum. Here we present a detailed numerical study about the penetration of relativistic protons into clumps which are engulfed by a SNR shock, taking into account the magneto-hydrodynamical properties of the background plasma. We show that the spectrum of protons inside clumps is much harder than that in the diffuse inter-clump medium and we discuss the implications for the formation of the spectrum of hadronic gamma rays, which does not reflect anymore the acceleration spectrum of protons, resulting substantially modified inside the clumps due to propagation effects. For the Galactic SNR RX J1713.7-3946, we show that a hadronic scenario including dense clumps inside the remnant shell is able to reproduce the broadband gamma-ray spectrum from GeV to TeV energies. Moreover, we argue that small clumps crossed by the shock could provide a natural explanation to the non-thermal X-ray variability observed in some hot spots of RX J1713.7-3946. Finally we discuss the detectability of gamma-ray emission from clumps with the upcoming Cherenkov Telescope Array and the possible detection of the clumps themselves through molecular lines.
The binary neutron star (BNS) merger event GW170817 clearly shows that a BNS merger launches a short Gamma-Ray Burst (sGRB) jet. Unlike collapsars, where the ambient medium is static, in BNS mergers the jet propagates through the merger ejecta that is expanding outward at substantial velocities ($sim 0.2c$). Here, we present semi-analytic and analytic models to solve the propagation of GRB jets through their surrounding media. These models improve our previous model by including the jet collimation by the cocoon self-consistently. We also perform a series of 2D numerical simulations of jet propagation in BNS mergers and in collapsars to test our models. Our models are consistent with numerical simulations in every aspect (the jet head radius, the cocoons lateral width, the jet opening angle including collimation, the cocoon pressure, and the jet-cocoon morphology). The energy composition of the cocoon is found to be different depending on whether the ambient medium is expanding or not; in the case of BNS merger jets, the cocoon energy is dominated by kinetic energy, while it is dominated by internal energy in collapsars. Our model will be useful for estimating electromagnetic counterparts to gravitational waves.
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in unprecedented detail the properties of galactic cosmic rays. A variety of scales and environments are now accessible to us, from the local interstellar medium near the Sun and the vicinity of cosmic-ray accelerators, out to the Milky Way at large and beyond, with a growing number of gamma-ray emitting star-forming galaxies. Gamma-ray observations have been pushing forward our understanding of the life cycle of cosmic rays in galaxies and, combined with advances in related domains, they have been challenging standard assumptions in the field and have spurred new developments in modelling approaches and data analysis methods. We provide a review of the status of the subject and discuss perspectives on future progress.