Do you want to publish a course? Click here

Quick-cast: A method for fast and precise scalable production of fluid-driven elastomeric soft actuators

132   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluid-driven elastomeric actuators (FEAs) are among the most popular actuators in the emerging field of soft robotics. Intrinsically compliant, with continuum of motion, large strokes, little friction, and high power-to-weight ratio, they are very similar to biological muscles, and have enabled new applications in automation, architecture, medicine, and human-robot interaction. To foster future applications of FEAs, in this paper we present a new manufacturing method for fast and precise scalable production of complex FEAs of high quality (leak-free, single-body form, with <0.2 mm precision). The method is based on 3d moulding and supports elastomers with a wide range of viscosity, pot life, and Youngs modulus. We developed this process for two different settings: one in laboratory conditions for fast prototyping with 3d printed moulds and using multi-component liquid elastomers, and the other process in an industrial setting with 3d moulds micromachined in metal and applying compression moulding. We demonstrate these methods in fabrication of up to several tens of two-axis, three-chambered soft actuators, with two types of chamber walls: cylindrical and corrugated. The actuators are then applied as motion drivers in kinetic photovoltaic building envelopes.

rate research

Read More

Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Single-file transport in pore-like structures constitute an important topic for both theory and experiment. For hardcore interacting particles, a good understanding of the collective dynamics has been achieved recently. Here we study how softness in the particle interaction affects the emergent transport behavior. To this end, we investigate driven Brownian motion of particles in a periodic potential. The particles interact via a repulsive softcore potential with a shape corresponding to a smoothed rectangular barrier. This shape allows us to elucidate effects of mutual particle penetration and particle crossing in a controlled manner. We find that even weak deviations from the hardcore case can have a strong impact on the particle current. Despite of this fact, the knowledge about the transport in a corresponding hardcore system is shown to be useful to describe and interpret our findings for the softcore case. This is achieved by assigning a thermodynamic effective size to the particles based on the equilibrium density functional of hard spheres.
We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from $approx51.6$ k$mathrm{Omega}$ to $approx236$ $mathrm{Omega}$ at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30 nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values.
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density field evolution can be linearized in the limit of a dense bath. This linearized Dean equation with a tracer taken apart is validated by the reproduction of previous results on the mean-field liquid structure and transport properties. Then, the tracer is submitted to an external force and we compute the density profile around it, its mobility and its diffusion coefficient. Our results exhibit effects such as bias enhanced diffusion that are very similar to those observed in the opposite limit of a hard core lattice gas, indicating the robustness of these effects. Our predictions are successfully tested against molecular dynamics simulations.
The dynamics of dissipative soft-sphere gases obeys Newtons equation of motion which are commonly solved numerically by (force-based) Molecular Dynamics schemes. With the assumption of instantaneous, pairwise collisions, the simulation can be accelerated considerably using event-driven Molecular Dynamics, where the coefficient of restitution is derived from the interaction force between particles. Recently it was shown, however, that this approach may fail dramatically, that is, the obtained trajectories deviate significantly from the ones predicted by Newtons equations. In this paper, we generalize the concept of the coefficient of restitution and derive a numerical scheme which, in the case of dilute systems and frictionless interaction, allows us to perform highly efficient event-driven Molecular Dynamics simulations even for non-instantaneous collisions. We show that the particle trajectories predicted by the new scheme agree perfectly with the corresponding (force-based) Molecular Dynamics, except for a short transient period whose duration corresponds to the duration of the contact. Thus, the new algorithm solves Newtons equations of motion like force-based MD while preserving the advantages of event-driven simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا