Do you want to publish a course? Click here

A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification

150   0   0.0 ( 0 )
 Added by Mounica Maddela
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Current lexical simplification approaches rely heavily on heuristics and corpus level features that do not always align with human judgment. We create a human-rated word-complexity lexicon of 15,000 English words and propose a novel neural readability ranking model with a Gaussian-based feature vectorization layer that utilizes these human ratings to measure the complexity of any given word or phrase. Our model performs better than the state-of-the-art systems for different lexical simplification tasks and evaluation datasets. Additionally, we also produce SimplePPDB++, a lexical resource of over 10 million simplifying paraphrase rules, by applying our model to the Paraphrase Database (PPDB).



rate research

Read More

Methods for learning word representations using large text corpora have received much attention lately due to their impressive performance in numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection. Despite their success, these data-driven word representation learning methods do not consider the rich semantic relational structure between words in a co-occurring context. On the other hand, already much manual effort has gone into the construction of semantic lexicons such as the WordNet that represent the meanings of words by defining the various relationships that exist among the words in a language. We consider the question, can we improve the word representations learnt using a corpora by integrating the knowledge from semantic lexicons?. For this purpose, we propose a joint word representation learning method that simultaneously predicts the co-occurrences of two words in a sentence subject to the relational constrains given by the semantic lexicon. We use relations that exist between words in the lexicon to regularize the word representations learnt from the corpus. Our proposed method statistically significantly outperforms previously proposed methods for incorporating semantic lexicons into word representations on several benchmark datasets for semantic similarity and word analogy.
186 - Hailong Cao , Tiejun Zhao 2021
Great progress has been made in unsupervised bilingual lexicon induction (UBLI) by aligning the source and target word embeddings independently trained on monolingual corpora. The common assumption of most UBLI models is that the embedding spaces of two languages are approximately isomorphic. Therefore the performance is bound by the degree of isomorphism, especially on etymologically and typologically distant languages. To address this problem, we propose a transformation-based method to increase the isomorphism. Embeddings of two languages are made to match with each other by rotating and scaling. The method does not require any form of supervision and can be applied to any language pair. On a benchmark data set of bilingual lexicon induction, our approach can achieve competitive or superior performance compared to state-of-the-art methods, with particularly strong results being found on distant languages.
Bilingual Lexicon Induction (BLI) aims to map words in one language to their translations in another, and is typically through learning linear projections to align monolingual word representation spaces. Two classes of word representations have been explored for BLI: static word embeddings and contextual representations, but there is no studies to combine both. In this paper, we propose a simple yet effective mechanism to combine the static word embeddings and the contextual representations to utilize the advantages of both paradigms. We test the combination mechanism on various language pairs under the supervised and unsupervised BLI benchmark settings. Experiments show that our mechanism consistently improves performances over robust BLI baselines on all language pairs by averagely improving 3.2 points in the supervised setting, and 3.1 points in the unsupervised setting.
The success of a text simplification system heavily depends on the quality and quantity of complex-simple sentence pairs in the training corpus, which are extracted by aligning sentences between parallel articles. To evaluate and improve sentence alignment quality, we create two manually annotated sentence-aligned datasets from two commonly used text simplification corpora, Newsela and Wikipedia. We propose a novel neural CRF alignment model which not only leverages the sequential nature of sentences in parallel documents but also utilizes a neural sentence pair model to capture semantic similarity. Experiments demonstrate that our proposed approach outperforms all the previous work on monolingual sentence alignment task by more than 5 points in F1. We apply our CRF aligner to construct two new text simplification datasets, Newsela-Auto and Wiki-Auto, which are much larger and of better quality compared to the existing datasets. A Transformer-based seq2seq model trained on our datasets establishes a new state-of-the-art for text simplification in both automatic and human evaluation.
Sentence simplification is the task of rewriting texts so they are easier to understand. Recent research has applied sequence-to-sequence (Seq2Seq) models to this task, focusing largely on training-time improvements via reinforcement learning and memory augmentation. One of the main problems with applying generic Seq2Seq models for simplification is that these models tend to copy directly from the original sentence, resulting in outputs that are relatively long and complex. We aim to alleviate this issue through the use of two main techniques. First, we incorporate content word complexities, as predicted with a leveled word complexity model, into our loss function during training. Second, we generate a large set of diverse candidate simplifications at test time, and rerank these to promote fluency, adequacy, and simplicity. Here, we measure simplicity through a novel sentence complexity model. These extensions allow our models to perform competitively with state-of-the-art systems while generating simpler sentences. We report standard automatic and human evaluation metrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا