Quantum modular forms and singular combinatorial series with distinct roots of unity


Abstract in English

Understanding the relationship between mock modular forms and quantum modular forms is a problem of current interest. Both mock and quantum modular forms exhibit modular-like transformation properties under suitable subgroups of $rm{SL}_2(mathbb Z)$, up to nontrivial error terms; however, their domains (the upper half-plane $mathbb H$, and the rationals $mathbb Q$, respectively) are notably different. Quantum modular forms, originally defined by Zagier in 2010, have also been shown to be related to the diverse areas of colored Jones polynomials, meromorphic Jacobi forms, partial theta functions, vertex algebras, and more. In this paper we study the $(n+1)$-variable combinatorial rank generating function $R_n(x_1,x_2,dots,x_n;q)$ for $n$-marked Durfee symbols. These are $n+1$ dimensional multisums for $n>1$, and specialize to the ordinary two-variable partition rank generating function when $n=1$. The mock modular properties of $R_n$ when viewed as a function of $tauinmathbb H$, with $q=e^{2pi i tau}$, for various $n$ and fixed parameters $x_1, x_2, cdots, x_n$, have been studied in a series of papers. Namely, by Bringmann and Ono when $n=1$ and $x_1$ a root of unity; by Bringmann when $n=2$ and $x_1=x_2=1$; by Bringmann, Garvan, and Mahlburg for $ngeq 2$ and $x_1=x_2=dots=x_n=1$; and by the first and third authors for $ngeq 2$ and the $x_j$ suitable roots of unity ($1leq j leq n$). The quantum modular properties of $R_1$ readily follow from existing results. Here, we focus our attention on the case $ngeq 2$, and prove for any $ngeq 2$ that the combinatorial generating function $R_n$ is a quantum modular form when viewed as a function of $x in mathbb Q$, where $q=e^{2pi i x}$, and the $x_j$ are suitable distinct roots of unity.

Download