Do you want to publish a course? Click here

Rings and gaps in protoplanetary disks: planets or snowlines?

137   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High resolution ALMA observations of protoplanetary disks have revealed that many, if not all primordial disks consist of ring-like dust structures. The origin of these dust rings remains unclear, but a common explanation is the presence of planetary companions that have cleared gaps along their orbit and trapped the dust at the gap edge. A signature of this scenario is a decrease of gas density inside these gaps. In recent work, Isella et al. 2016 derived drops in gas density consistent with Saturn-mass planets inside the gaps in the HD163296 disk through spatially resolved CO isotopologue observations. However, as CO abundance and temperature depends on a large range of factors, the interpretation of CO emission is non-trivial. We use the physical-chemical code DALI to show that the gas temperature increases inside dust density gaps, implying that any gaps in the gas, if present, would have to be much deeper, consistent with planet masses higher than a Jupiter mass. Furthermore, we show that a model with increased grain growth at certain radii, as expected at a snowline, can reproduce the dust rings in HD163296 equally well without the need for companions. This scenario can explain both younger and older disks with observed gaps, as gaps have been seen in systems as young <1 Myr. While the origin of the rings in HD163296 remains unclear, these modeling results demonstrate that care has to be taken when interpreting CO emission in protoplanetary disk observations.



rate research

Read More

375 - Ruobing Dong , Sheng-yuan Liu , 2018
Protoplanets can produce structures in protoplanetary disks via gravitational disk-planet interactions. Once detected, such structures serve as signposts of planet formation. Here we investigate the kinematic signatures in disks produced by multi-Jupiter mass ($M_{rm J}$) planets using 3D hydrodynamics and radiative transfer simulations. Such a planet opens a deep gap, and drives transonic vertical motions inside. Such motions include both a bulk motion of the entire half-disk column, and turbulence on scales comparable to and smaller than the scale height. They significantly broaden molecular lines from the gap, producing double-peaked line profiles at certain locations, and a kinematic velocity dispersion comparable to thermal after azimuthal averaging. The same planet does not drive fast vertical motions outside the gap, except at the inner spiral arms and the disk surface. Searching for line broadening induced by multi-$M_{rm J}$ planets inside gaps requires an angular resolution comparable to the gap width, an assessment of the gap gas temperature to within a factor of 2, and a high sensitivity needed to detect line emission from the gap.
127 - Ryan Miranda IAS 2019
It has been recently suggested that the multiple concentric rings and gaps discovered by ALMA in many protoplanetary disks may be produced by a single planet, as a result of the complex propagation and dissipation of the multiple spiral density waves it excites in the disk. Numerical efforts to verify this idea have largely utilized the so-called locally isothermal approximation with a prescribed disk temperature profile. However, in protoplanetary disks this approximation does not provide an accurate description of the density wave dynamics on scales of tens of au. Moreover, we show that locally isothermal simulations tend to overestimate the contrast of ring and gap features, as well as misrepresent their positions, when compared to simulations in which the energy equation is evolved explicitly. This outcome is caused by the non-conservation of the angular momentum flux of linear perturbations in locally isothermal disks. We demonstrate this effect using simulations of locally isothermal and adiabatic disks (with essentially identical temperature profiles) and show how the dust distributions, probed by mm wavelength observations, differ between the two cases. Locally isothermal simulations may thus underestimate the masses of planets responsible for the formation of multiple gaps and rings on scales of tens of au observed by ALMA. We suggest that caution should be exercised in using the locally isothermal simulations to explore planet-disk interaction, as well as in other studies of wave-like phenomena in astrophysical disks.
The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in sub-mm images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scalings of characteristic dust gap width/gap-ring distance with respect to planet mass. Applying such scalings to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bi-modal mass function due to 1) the onset of runaway gas accretion above sim20 Earth masses and 2) suppression of accretion induced by gap opening. Here we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bi-modal mass distribution and the observed continuous gap width distribution. Despite damping due to planet-disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in ALMA images.
Since the discovery of the multi-ring structure of the HL Tau disk, ALMA data suggest that the dust continuum emission of many, if not all, protoplanetary disks consists of rings and gaps, no matter their spectral type or age. The origin of these gaps so far remains unclear. We present a sample study of 16 disks with multiple ring-like structures in the continuum, using published ALMA archival data, to compare their morphologies and gap locations in a systematic way. The 16 targets range from early to late type stars, from <0.5 Myr to >10 Myr, from ~0.2 to 40 L_Sun and include both full and transitional disks with cleared inner dust cavities. Stellar ages are revised using new Gaia distances. Gap locations are derived using a simple radial fit to the intensity profiles. Using a radiative transfer model, the temperature profiles are computed. The gap radii generally do not correspond to the orbital radii of snow lines of the most common molecules. A snow line model can likely be discarded as a common origin of multi-ring systems. In addition, there are no systematic trends in the gap locations that could be related to resonances of planets. Finally, the outer radius of the disks decreases for the oldest disks in the sample, indicating that if multi-ring disks evolve in a similar way, outer dust rings either dissipate with the gas or grow into planetesimal belts.
71 - Ryan Miranda IAS 2020
Many protoplanetary disks exhibit annular gaps in dust emission, which may be produced by planets. Simulations of planet-disk interaction aimed at interpreting these observations often treat the disk thermodynamics in an overly simplified manner, which does not properly capture the dynamics of planet-driven density waves driving gap formation. Here we explore substructure formation in disks using analytical calculations and hydrodynamical simulations that include a physically-motivated prescription for radiative effects associated with the planet-induced density waves. For the first time, our treatment accounts not only for cooling from the disk surface, but also for radiation transport along the disk midplane. We show that this in-plane cooling, with a characteristic timescale typically an order of magnitude shorter than the one due to surface cooling, plays a critical role in density wave propagation and dissipation (we provide a simple estimate of this timescale). We also show that viscosity, at the levels expected in protoplanetary disks ($alpha lesssim 10^{-3}$), has a negligible effect on density wave dynamics. Using synthetic maps of dust continuum emission, we find that the multiplicity and shape of the gaps produced by planets are sensitive to the physical parameters---disk temperature, mass, and opacity---that determine the damping of density waves. Planets orbiting at $lesssim 20$ au produce the most diverse variety of gap/ring structures, although significant variation is also found for planets at $gtrsim 50$ au. By improving the treatment of physics governing planet-disk coupling, our results present new ways of probing the planetary interpretation of annular substructures in disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا