Do you want to publish a course? Click here

Surface structures of tellurium on Si(111)-(7x7) studied by low-energy electron diffraction and scanning tunneling microscopy

171   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Te-covered Si(111) surface has received recent interest as a template for the epitaxy of van der Waals (vdW) materials, e.g. Bi$_2$Te$_3$. Here, we report the formation of a Te buffer layer on Si(111)$-$(7$times$7) by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While deposition of several monolayer (ML) of Te on the Si(111)$-$(7$times$7) surface at room temperature results in an amorphous Te layer, increasing the substrate temperature to $770rm,K$ results in a weak (7$times$7) electron diffraction pattern. Scanning tunneling microscopy of this surface shows remaining corner holes from the Si(111)$-$(7$times$7) surface reconstruction and clusters in the faulted and unfaulted halves of the (7$times$7) unit cells. Increasing the substrate temperature further to $920rm,K$ leads to a Te/Si(111)$-(2sqrt3times2sqrt{3})rm R30^{circ}$ surface reconstruction. We find that this surface configuration has an atomically flat structure with threefold symmetry.



rate research

Read More

In this cross-sectional scanning tunneling microscopy study we investigated various techniques to control the shape of self-assembled quantum dots (QDs) and wetting layers (WLs). The result shows that application of an indium flush during the growth of strained InGaAs/GaAs QD layers results in flattened QDs and a reduced WL. The height of the QDs and WLs could be controlled by varying the thickness of the first capping layer. Concerning the technique of antimony capping we show that the surfactant properties of Sb result in the preservation of the shape of strained InAs/InP QDs during overgrowth. This could be achieved by both a growth interrupt under Sb flux and capping with a thin GaAsSb layer prior to overgrowth of the uncapped QDs. The technique of droplet epitaxy was investigated by a structural analysis of strain free GaAs/AlGaAs QDs. We show that the QDs have a Gaussian shape, that the WL is less than 1 bilayer thick, and that minor intermixing of Al with the QDs takes place.
208 - P. Kocan 2004
A growth model and parameters obtained in our previous experimental (scanning tunneling microscopy, KMC) and theoretical (kinetic Monte Carlo simulations, KMC) studies of Ag/Si(111)-(7x7) heteroepitaxy were used to optimise growth conditions (temperature and deposition rate) for the most ordered self-organized growth of Ag island arrays on the (7x7) reconstructed surface. The conditions were estimated by means of KMC simulations using the preference in occupation of half unit cells (HUCs) of F-type as a criterion of island ordering. Morphology of experimentally prepared island structures was studied by STM. High degree of experimentally obtained island ordering is compared with the simulated data and results are discussed with respect to the model and parameters used at the KMC simulations.
We demonstrate that it is possible to mechanically exfoliate graphene under ultra high vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint in agreement with calculated data. Single layer graphene is investigated by Raman mapping. The G and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of n_h simeq 6x10^{12} cm^{-2}. The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.
We report an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about a bond-centered pseudoatom model, we find experimentally that the adatoms are in an anti-bonding state with the atoms directly below. We are also able to experimentally refine a charge transfer of 0.26(4) e- from each adatom site to the underlying layers. These results are compared with a full-potential all-electron density functional DFT calculation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا