No Arabic abstract
We report on the time-resolved investigation of current- and field-induced domain wall motion in perpendicularly magnetized microwires exhibiting asymmetric exchange interaction by means of scanning transmission x-ray microscopy using a time step of 200 ps. Dynamical domain wall velocities on the order of 50-100 m s$^{-1}$ were observed. The improvement in the temporal resolution allowed us to observe the absence of incubation times for the motion of the domain wall, together with indications for a negligible inertia. Furthermore, we observed that, for short current and magnetic field pulses, the magnetic domain walls do not exhibit a tilting during its motion, providing a mechanism for the fast, tilt-free, motion of magnetic domain walls.
Perpendicularly magnetized nanowires exhibit distinct domain wall types depending on the geometry. Wide wires contain Bloch walls, narrow wires Neel walls. Here, the transition region is investigated by direct imaging of the wall structure using high-resolution spin-polarized scanning electron microscopy. An achiral intermediate wall type is discovered that is unpredicted by established theoretical models. With the help of micromagnetic simulations, the formation of this novel wall type is explained.
We present a study of the temperature dependence of the switching fields in Co/Ni-based perpendicularly magnetized spin-valves. While magnetization reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is typically marked by a single sharp step change in resistance, low temperature measurements can reveal a series of resistance steps, consistent with non-uniform magnetization configurations. We propose a model that consists of domain nucleation, propagation and annihilation to explain the temperature dependence of the switching fields. Interestingly, low temperature (<30 K) step changes in resistance that we associate with domain nucleation, have a bimodal switching field and resistance step distribution, attributable to two competing nucleation pathways.
A mutual synchronization of spin-torque oscillators coupled through current injection is studied theoretically. Models of electrical coupling in parallel and series circuits are proposed. Solving the Landau-Lifshitz-Gilbert equation, excitation of in-phase or antiphase synchronization, depending on the ways the oscillators are connected, is found. It is also found from both analytical and numerical calculations that the current-frequency relations for both parallel and series circuits are the same as that for a single spin-torque oscillator.
The oscillation properties of a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are studied based on an analysis of the energy balance between spin torque and damping. The critical value of an external magnetic field applied normal to the film plane is found, below which the controllable range of the oscillation frequency by the current is suppressed. The value of the critical field depends on the magnetic anisotropy, the saturation magnetization, and the spin torque parameter.
We demonstrated that thick Permalloy films exhibiting a weak growth-induced perpendicular magnetic anisotropy can be employed as an ideal test system for the investigation of gyration dynamics in topologically trivial and non-trivial magnetic states ranging from an isolated magnetic skyrmion to more complex n$pi$ spin configurations.