Do you want to publish a course? Click here

Nonlinear saturation of toroidal Alfven eigenmodes via nonlinear mode couplings

70   0   0.0 ( 0 )
 Added by Zhiyong Qiu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gyrokinetic theory of nonlinear mode coupling as a mechanism for toroidal Alfven eigenmode (TAE) saturation in the fusion plasma related parameter regime is presented, including 1) para- metric decay of TAE into lower kinetic TAE (LKTAE) and geodesic acoustic mode (GAM), and 2) enhanced TAE coupling to shear Alfven wave (SAW) continuum via ion induced scattering. Our theory shows that, for TAE saturation in the parameter range of practical interest, several processes with comparable scattering cross sections can be equally important.



rate research

Read More

Spontaneous nonlinear excitation of geodesic acoustic mode (GAM) by toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, the nonlinear decay process depends on thermal ion beta value. Here, beta is the plasma thermal to magnetic pressure ratio. In the low-beta limit, TAE decays into a GAM and a lower TAE sideband in the toroidicity induced shear Alfven wave continuous spectrum gap; while in the high-beta limit, TAE decays into a GAM and a propagating kinetic TAE in the continuum. Both cases are investigated for the spontaneous decay conditions. The nonlinear saturation levels of both GAM and daughter wave are derived. The corresponding power balance and wave particle power transfer to thermal plasma are computed. Implications on thermal plasma heating are also discussed.
Nonlinear saturation of toroidal Alfven eigenmode (TAE) via ion induced scatterings is investigated in the short-wavelength gyrokinetic regime. It is found that the nonlinear evolution depends on the thermal ion b{eta} value. Here, b{eta} is the plasma thermal to magnetic pressure ratio. Both the saturation levels and associated energetic-particle transport coefficients are derived and estimated correspondingly.
Nonlinear generation of high frequency mode (HFM) by toroidal Alfven eigenmode (TAE) observed in HL-2A tokamak is analyzed using nonlinear gyrokinetic theory. It is found that, the HFM can be dominated by $|nq-m|=1$ perturbations with predominantly ideal magnetohydrodynamic if the two primary TAEs are co-propagating; while the HFM can be characterized by $nq-m=0$ electrostatic perturbations if the two primary TAEs are counter-propagating. Here, $n$ and $m$ are respectively the toroidal and poloidal mode numbers, and $q$ is the safety factor. The nonlinear process is sensitive to the equilibrium magnetic geometry of the device.
Linear and nonlinear modelling of Alfvenic instabilities, most notably toroidal Alfven eigenmodes (TAEs), obtained by using the global nonlinear electromagnetic gyrokinetic model of the code ORB5 are presented for the 15 MA scenario of the ITER tokamak. Linear simulations show that elliptic Alfven eigenmodes and odd-parity TAEs are only weakly damped but not excited by alpha particles, whose drive favours even-parity TAEs. Low mode number TAEs are found to be global, requiring global treatment. Nonlinearly, even with double the nominal EP density, single mode simulations lead to saturation with negligible EP transport however multi-mode simulations predict that with double the nominal EP density, enhanced saturation and significant EP redistribution will occur.
Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا