Superfast encodings for fermionic quantum simulation


Abstract in English

Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree $d$ to a qubit simulator Hamiltonian composed of Pauli operators of weight $O(d)$. A system of $m$ fermi modes gets mapped to $n=O(md)$ qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree $dge 6$. In contrast, we prove that the original Superfast Encoding lacks the error correction property for $dle 6$. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from $O(d)$ to $O(log{d})$. The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.

Download