Do you want to publish a course? Click here

Quantum Formation of Primordial Black holes

110   0   0.0 ( 0 )
 Added by Andrea Giugno
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a (simplified) quantum description of primordial black holes at the time of their formation. Specifically, we employ the horizon quantum mechanics to compute the probability of black hole formation starting from a simple quantum mechanical characterization of primordial density fluctuations given by a Planckian spectrum. We then estimate the initial number of primordial black holes in the early universe as a function of their typical mass and temperature of the fluctuation.



rate research

Read More

We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. The non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the back-scattered radiation. It is shown that, as a critical mass of the order of Plancks mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.
141 - Roberto Casadio 2021
We present a quantum description of black holes with a matter core given by coherent states of gravitons. The expected behaviour in the weak-field region outside the horizon is recovered, with arbitrarily good approximation, but the classical central singularity cannot be resolved because the coherent states do not contain modes of arbitrarily short wavelength. Ensuing quantum corrections both in the interior and exterior are also estimated by assuming the mean-field approximation continues to hold. These deviations from the classical black hole geometry could result in observable effects in the gravitational collapse of compact objects and both astrophysical and microscopic black holes.
We estimate the spin distribution of primordial black holes based on the recent study of the critical phenomena in the gravitational collapse of a rotating radiation fluid. We find that primordial black holes are mostly slowly rotating.
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in terms of the number of quanta in the coherent state. We then note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the compactness remains at most of order one even for black holes, and the corpuscular predictions are thus recovered, with the quantised horizon area expressed in terms of the number of quanta in the coherent state. Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.
Primordial black holes (PBHs) are an important tool in cosmology to probe the primordial spectrum of small-scale curvature perturbations that reenter the cosmological horizon during radiation domination epoch. We numerically solve the evolution of spherically symmetric highly perturbed configurations to clarify the criteria of PBHs formation using a wide class of curvature profiles characterized by five parameters. It is shown that formation or non-formation of PBHs is determined essentialy by only two master parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا