No Arabic abstract
The process of divertor detachment, whereby heat and particle fluxes to divertor surfaces are strongly diminished, is required to reduce heat loading and erosion in a magnetic fusion reactor to acceptable levels. In this paper the physics leading to the decrease of the total divertor ion current (It), or roll-over, is experimentally explored on the TCV tokamak through characterization of the location, magnitude and role of the various divertor ion sinks and sources including a complete analysis of particle and power balance. These first measurements of the profiles of divertor ionisation and hydrogenic radiation along the divertor leg are enabled through novel spectroscopic techniques. Over a range in TCV plasma conditions (plasma current and electron density, with/without impurity-seeding) the $I_t$ roll-over is ascribed to a drop in the divertor ion source; recombination remains small or negligible farther into the detachment process. The ion source reduction is driven by both a reduction in the power available for ionization, Precl, and concurrent increase in the energy required per ionisation, $E_{ion}$: often described as power starvation (or power limitation). The detachment threshold is found experimentally (in agreement with analytic model predictions) to be $sim P_{recl}/I_t {E_{ion}} sim 2$, corresponding to a target electron temperature, $T_t sim E_{ion}/{gamma}$ where ${gamma}$ is the sheath transmission coefficient. The target pressure reduction, required to reduce the target ion current, is driven both by volumetric momentum loss as well as upstream pressure loss. The measured evolution through detachment of the divertor profile of various ion sources/sinks as well as power losses are quantitatively reproduced through full 2D SOLPS modelling through the detachment process as the core density is varied.
The aim of this work is to provide an understanding of detachment at TCV with emphasis on analysis of the Balmer line emission. A new Divertor Spectroscopy System has been developed for this purpose. Further development of Balmer line analysis techniques has allowed detailed information to be extracted from the three-body recombination contribution to the n=7 Balmer line intensity. During density ramps, the plasma at the target detaches as inferred from a drop in ion current to the target. At the same time the Balmer $6rightarrow2$ and $7rightarrow2$ line emission near the target is dominated by recombination. As the core density increases further, the density and recombination rate are rising all along the outer leg to the x-point while remaining highest at the target. Even at the highest core densities accessed (Greenwald fraction 0.7) the peaks in recombination and density may have moved not more than a few cm poloidally away from the target which is different to other, higher density tokamaks, where both the peak in recombination and density continue to move towards the x-point as the core density is increased. The inferred magnitude of recombination is small compared to the target ion current at the time detachment (particle flux drop) starts at the target. However, recombination may be having more localized effects (to a flux tube) which we cannot discern at this time. Later, at the highest densities achieved, the total recombination does reach levels similar to the particle flux.
In this work we provide experimental insights into the impact of plasma-molecule interactions on the target ion flux decrease during divertor detachment achieved through a core density ramp in the TCV tokamak. Our improved analysis of the hydrogen Balmer series shows that plasma-molecule processes are strongly contributing to the Balmer series intensities and substantially alter the divertor detachment particle balance. We find that Molecular Activated Recombination (MAR) ion sinks from $H_2^+$ and/or $H^-$ are a factor $sim$ 5 larger than Electron-Ion Recombination (EIR) and are a significant contributor to the observed reduction in the outer divertor ion target flux. Molecular Activated Ionisation (MAI) may also be significant during detachment. Plasma-molecule interactions enhance the Balmer line series emission strongly near the target as detachment proceeds. This indicates enhancements of the Lyman series, potentially affecting power balance in the divertor. As those enhancements vary spatially in the divertor and are different for different transitions, they are expected to result in a separation of the $Lybeta$ and $Lyalpha$ emission regions. This may have implications for the treatment and diagnosis of divertor opacity. The demonstrated enhancement of the Balmer series through plasma-molecule processes potentially poses a challenge to using the Balmer series for understanding and diagnosing detachment based only on atom-plasma processes.
In future nuclear fusion reactors high heat load events, such as edge-localised modes (ELMs), can potentially damage divertor materials and release impurities into the main plasma, limiting plasma performance. The most difficult to handle are type I ELMs since they carry the largest fraction of energy from the plasma and therefore deposit the largest heat flux at the target and on first wall materials. Knowing the temperature of the ions released from ELM events is important since it determines the potential sputtering they would cause from plasma facing materials. To make measurements of Ti by retarding field energy analyser (RFEA) during type I ELMs a new operational technique has been used to allow faster measurements to be made; this is called the fast swept technique (FST).
A major goal of molecular evolutionary biology is to identify loci or regions of the genome under selection versus those evolving in a neutral manner. Correct identification allows accurate inference of the evolutionary process and thus comprehension of historical and contemporary processes driving phenotypic change and adaptation. A fundamental difficulty lies in distinguishing sites targeted by selection from both sites linked to these targets and sites fully independent of selection. These three categories of sites necessitate attention in light of the debate over the relative importance of selection versus neutrality and the neutral theory. Modern genomic insights have proved that complex processes such as linkage, demography, and biased gene conversion complicate our understanding of the role of neutral versus selective processes in evolution. In this perspective, we first highlight the importance of the genomic and (a)biotic context of new mutations to identify the targets of natural selection. We then present mechanisms that may constrain the evolution of genomes and bias the inference of selection. We discuss these mechanisms within the two critical levels that they occur: the population level and the molecular level. We highlight that they should be taken into account to correctly distinguish sites across the genome subject to selective or non-selective forces and stress that a major current field-wide goal is to quantify the absolute importance of these mechanisms.
The physics of divertor detachment is determined by divertor power, particle and momentum balance. This work provides a novel analysis technique of the Balmer line series to obtain a full particle/power balance measurement of the divertor. This supplies new information to understand what controls the divertor target ion flux during detachment. Atomic deuterium excitation emission is separated from recombination quantitatively using Balmer series line ratios. This enables analysing those two components individually, providing ionisation/recombination source/sinks and hydrogenic power loss measurements. Probabilistic Monte Carlo techniques were employed to obtain full error propagation - eventually resulting in probability density functions for each output variable. Both local and overall particle and power balance in the divertor are then obtained. These techniques and their assumptions have been verified by comparing the analysed synthetic diagnostic measurements obtained from SOLPS simulation results for the same discharge. Power/particle balance measurements have been obtained during attached and detached conditions on the TCV tokamak.