Magnetic-field-induced incommensurate to collinear spin order transition in NiBr$_{2}$


Abstract in English

The triangular spin lattice of NiBr$_{2}$ is a canonical example of a frustrated helimagnet that shows a temperature-driven phase transition from a collinear commensurate antiferromagnetic structure to an incommensurate spin helix on cooling. Employing neutron diffraction, bulk magnetization, and magnetic susceptibility measurements, we have studied the fhspace*{.5pt}ield-induced magnetic states of the NiBr$_{2}$ single crystal. Experimental fhspace*{.5pt}indings enable us to recapitalize the driving forces of the spin spiral ordering in the triangular spin-lattice systems, in general. Neutron diffraction data confhspace*{.5pt}irms, at low temperature below T$_{{rm m}}$ = 22.8(1) K, the presence of diffraction satellites characteristic of an incommensurate magnetic state, which are symmetrically arranged around main magnetic reflections that evolve just below T$_{{rm N}}$ = 44.0(1) K. Interestingly, a fhspace*{.5pt}ield-induced transition from the incommensurate to commensurate spin phase has been demonstrated that enforces spin helix to restore the high temperature compensated antiferromagnetic structure. This spin reorientation can be described as a spin-flop transition in the (hbox{$a$--$b$}) basal plane of a triangular spin lattice system. These fhspace*{.5pt}indings offer a new pathway to control the spin helix in incommensurate phases that are currently considered having high technical implications in the next-generation data storage devices.

Download