Do you want to publish a course? Click here

An edge-based pressure stabilisation technique for finite elements on arbitrarily anisotropic meshes

59   0   0.0 ( 0 )
 Added by Stefan Frei
 Publication date 2018
  fields
and research's language is English
 Authors Stefan Frei




Ask ChatGPT about the research

In this article, we analyse a stabilised equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a sub-domain, for example along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element.This discretisation is motivated by applications on moving domains as arising e.g. in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original Continuous Interior Penalty stabilisation approach. We show analytically the discrete stability of the method and convergence of order ${cal O}(h^{3/2})$ in the energy norm and ${cal O}(h^{5/2})$ in the $L^2$-norm of the velocities. We present numerical examples for a linear Stokes problem and for a non-linear fluid-structure interaction problem, that substantiate the analytical results and show the capabilities of the approach.



rate research

Read More

Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.
We propose a general theory of estimating interpolation error for smooth functions in two and three dimensions. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In the two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. Through the introduction of the geometric parameter, the error estimates newly obtained can be applied to cases that violate the maximum-angle condition.
We investigate the piecewise linear nonconforming Crouzeix-Raviar and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and the Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasise that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.
In this work, we develop a discretisation method for the mixed formulation of the magnetostatic problem supporting arbitrary orders and polyhedral meshes. The method is based on a global discrete de Rham (DDR) sequence, obtained by patching the local spaces constructed in [Di Pietro, Droniou, Rapetti, Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra, arXiv:1911.03616] by enforcing the single-valuedness of the components attached to the boundary of each element. The first main contribution of this paper is a proof of exactness relations for this global DDR sequence, obtained leveraging the exactness of the corresponding local sequence and a topological assembly of the mesh valid for domains that do not enclose any void. The second main contribution is the formulation and well-posedness analysis of the method, which includes the proof of uniform Poincare inequalities for the discrete divergence and curl operators. The convergence rate in the natural energy norm is numerically evaluated on standard and polyhedral meshes. When the DDR sequence of degree $kge 0$ is used, the error converges as $h^{k+1}$, with $h$ denoting the meshsize.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا