Do you want to publish a course? Click here

X-rays across the galaxy population - III. The incidence of AGN as a function of star formation rate

282   0   0.0 ( 0 )
 Added by James Aird
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We map the co-eval growth of galaxies and their central supermassive black holes in detail by measuring the incidence of Active Galactic Nuclei (AGN) in galaxies as a function of star formation rate (SFR) and redshift (to z~4). We combine large galaxy samples with deep Chandra X-ray imaging to measure the probability distribution of specific black hole accretion rates (LX relative to stellar mass) and derive robust AGN fractions and average specific accretion rates. First, we consider galaxies along the main sequence of star formation. We find a linear correlation between the average SFR and both the AGN fraction and average specific accretion rate across a wide range in stellar mass ($M_* sim 10^{8.5-11.5}M_odot$) and to at least z~2.5, indicating that AGN in main-sequence galaxies are driven by the stochastic accretion of cold gas. We also consider quiescent galaxies and find significantly higher AGN fractions than predicted, given their low SFRs, indicating that AGN in quiescent galaxies are fuelled by additional mechanisms (e.g. stellar winds). Next, we bin galaxies according to their SFRs relative to the main sequence. We find that the AGN fraction is significantly elevated for galaxies that are still star-forming but with SFRs below the main sequence, indicating further triggering mechanisms enhance AGN activity within these sub-main-sequence galaxies. We also find that the incidence of high-accretion-rate AGN is enhanced in starburst galaxies and evolves more mildly with redshift than within the rest of the galaxy population, suggesting mergers play a role in driving AGN activity in such high-SFR galaxies.



rate research

Read More

We use deep Chandra imaging to measure the distribution of X-ray luminosities (L_X) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at L_X < 10^{42} erg/s that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher L_X. Tracking the luminosity of these peaks as a function of stellar mass reveals an X-ray main sequence with a constant slope ~0.63 +/- 0.03 over 8.5 < log M*/Msun < 11.5 and 0.1 < z < 4, with a normalization that increases with redshift as (1+z)^{3.79+/-0.12}. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between L_X and SFR. We find that L_X propto SFR^{0.83} x (1+z)^{1.3}, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to L_X, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ~0.76+/-0.06 and a normalization that evolves with redshift as (1+z)^{2.95+/-0.33}. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of L_X to SFR.
We use deep Chandra X-ray imaging to measure the distribution of specific black hole accretion rates ($L_X$ relative to the stellar mass of the galaxy) and thus trace AGN activity within star-forming and quiescent galaxies, as a function of stellar mass (from $10^{8.5}-10^{11.5} M_odot$) and redshift (to $z sim 4$). We adopt near-infrared selected samples of galaxies from the CANDELS and UltraVISTA surveys, extract X-ray data for every galaxy, and use a flexible Bayesian method to combine these data and to measure the probability distribution function of specific black hole accretion rates, $lambda_{sBHAR}$. We identify a broad distribution of $lambda_{sBHAR}$ in both star-forming and quiescent galaxies---likely reflecting the stochastic nature of AGN fuelling---with a roughly power-law shape that rises toward lower $lambda_{sBHAR}$, a steep cutoff at $lambda_{sBHAR} gtrsim 0.1-1$ (in Eddington equivalent units), and a turnover or flattening at $lambda_{sBHAR} lesssim 10^{-3}-10^{-2}$. We find that the probability of a star-forming galaxy hosting a moderate $lambda_{sBHAR}$ AGN depends on stellar mass and evolves with redshift, shifting toward higher $lambda_{sBHAR}$ at higher redshifts. This evolution is truncated at a point corresponding to the Eddington limit, indicating black holes may self-regulate their growth at high redshifts when copious gas is available. The probability of a quiescent galaxy hosting an AGN is generally lower than that of a star-forming galaxy, shows signs of suppression at the highest stellar masses, and evolves strongly with redshift. The AGN duty cycle in high-redshift ($zgtrsim2$) quiescent galaxies thus reaches $sim$20 per cent, comparable to the duty cycle in star-forming galaxies of equivalent stellar mass and redshift.
The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data from many astronomical observatories. Its main focus is on the Herschel data, which maps dust obscured star formation over 1300 deg$^2$. With this unprecedented combination of data sets, it is possible to investigate how the star formation vs stellar mass relation (main-sequence) of star-forming galaxies depends on environment. In this pilot study we explore this question between 0.1 < z < 3.2 using data in the COSMOS field. We estimate the local environment from a smoothed galaxy density field using the full photometric redshift probability distribution. We estimate star formation rates by stacking the SPIRE data from the Herschel Multi-tiered Extragalactic Survey (HerMES). Our analysis rules out the hypothesis that the main-sequence for star-forming systems is independent of environment at 1.5 < z < 2, while a simple model in which the mean specific star formation rate declines with increasing environmental density gives a better description. However, we cannot exclude a simple hypothesis in which the main-sequence for star-forming systems is independent of environment at z < 1.5 and z > 2. We also estimate the evolution of the star formation rate density in the COSMOS field and our results are consistent with previous measurements at z < 1.5 and z > 2 but we find a $1.4^{+0.3}_{-0.2}$ times higher peak value of the star formation rate density at $z sim 1.9$.
Disc fragmentation plays an important role in determining the number of primordial stars (Pop III stars), their masses, and hence the initial mass function. In this second paper of a series, we explore the effect of uniform FUV H$_2$-photodissociating and X-ray radiation backgrounds on the formation of Pop~III stars using a grid of high-resolution zoom-in simulations. We find that, in an X-ray background, protostellar discs have lower surface density and higher Toomre $Q$ parameter, so they are more stable. For this reason, X-ray irradiated discs undergo fewer fragmentations and typically produce either binary systems or low-multiplicity systems. In contrast, the cases with weak or no X-ray irradiation produce systems with a typical multiplicity of $6 pm 3$. In addition, the most massive protostar in each system is smaller by roughly a factor of two when the disc is irradiated by X-rays, due to lower accretion rate. With these two effects combined, the initial mass function of fragments becomes more top-heavy in a strong X-ray background and is well described by a power-law with slope $1.53$ and high-mass cutoff of $61$ M$_odot$. Without X-rays, we find a slope $0.49$ and cutoff mass of $229$ M$_odot$. Finally, protostars migrate outward after their formation due to the accretion of high-angular momentum gas from outside and the migration is more frequent and significant in absence of X-ray irradiation.
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN, whereas the latter includes emission from AGN-heated dust only. We find that at all redshifts (at least up to z~2.5), the high luminosity tails of the two LFs converge, indicating that the most infrared-luminous galaxies are AGN-powered. Our results shed light to the decades-old conundrum regarding the flatter high-luminosity slope seen in the IR galaxy LF compared to that in the UV and optical. We attribute this difference to the increasing fraction of AGN-dominated galaxies with increasing total infrared luminosity (L_IR). We partition the L_IR-z parameter space into a star-formation and an AGN-dominated region, finding that the most luminous galaxies at all epochs lie in the AGN-dominated region. This sets a potential `limit to attainable star formation rates, casting doubt on the abundance of `extreme starbursts: if AGN did not exist, L_IR>10^13 Lsun galaxies would be significantly rarer than they currently are in our observable Universe. We also find that AGN affect the average dust temperatures (T_dust) of galaxies and hence the shape of the well-known L_IR-T_dust relation. We propose that the reason why local ULIRGs are hotter than their high redshift counterparts is because of a higher fraction of AGN-dominated galaxies amongst the former group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا