A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations


Abstract in English

Multi-messenger observations of GW170817 have not conclusively established whether the merger remnant is a black hole (BH) or a neutron star (NS). We show that a long-lived magnetized NS with a poloidal field $Bapprox 10^{12}$G is fully consistent with the electromagnetic dataset, when spin down losses are dominated by gravitational wave (GW) emission. The required ellipticity $epsilongtrsim 10^{-5}$ can result from a toroidal magnetic field component much stronger than the poloidal component, a configuration expected from a NS newly formed from a merger. Abrupt magnetic dissipation of the toroidal component can lead to the appearance of X-ray flares, analogous to the one observed in gamma-ray burst (GRB) afterglows. In the X-ray afterglow of GW170817 we identify a low-significance ($gtrsim 3sigma$) temporal feature at 155 d, consistent with a sudden reactivation of the central NS. Energy injection from the NS spin down into the relativistic shock is negligible, and the underlying continuum is fully accounted for by a structured jet seen off-axis. Whereas radio and optical observations probe the interaction of this jet with the surrounding medium, observations at X-ray wavelengths, performed with adequate sampling, open a privileged window on to the merger remnant.

Download