Do you want to publish a course? Click here

A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations

142   0   0.0 ( 0 )
 Added by Luigi Piro
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multi-messenger observations of GW170817 have not conclusively established whether the merger remnant is a black hole (BH) or a neutron star (NS). We show that a long-lived magnetized NS with a poloidal field $Bapprox 10^{12}$G is fully consistent with the electromagnetic dataset, when spin down losses are dominated by gravitational wave (GW) emission. The required ellipticity $epsilongtrsim 10^{-5}$ can result from a toroidal magnetic field component much stronger than the poloidal component, a configuration expected from a NS newly formed from a merger. Abrupt magnetic dissipation of the toroidal component can lead to the appearance of X-ray flares, analogous to the one observed in gamma-ray burst (GRB) afterglows. In the X-ray afterglow of GW170817 we identify a low-significance ($gtrsim 3sigma$) temporal feature at 155 d, consistent with a sudden reactivation of the central NS. Energy injection from the NS spin down into the relativistic shock is negligible, and the underlying continuum is fully accounted for by a structured jet seen off-axis. Whereas radio and optical observations probe the interaction of this jet with the surrounding medium, observations at X-ray wavelengths, performed with adequate sampling, open a privileged window on to the merger remnant.



rate research

Read More

One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here we revisit the neutron star remnant scenario with a focus on longer signal durations up until the end of the Second Advanced LIGO-Virgo Observing run, 8.5 days after the coalescence of GW170817. The main physical scenario for such emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveformand different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. This study however serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($lesssim1$ s) and intermediate-duration ($lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{rm rss}^{50%}=2.1times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{rm rss}^{50%}=8.4times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{rm rss}^{50%}=5.9times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
Mergers of double neutron stars (DNSs) could lead to the formation of a long-lived massive remnant NS, which has been previously suggested to explain the AT 2017gfo kilonova emission in the famous GW170817 event. For an NS-affected kilonova, it is expected that a non-thermal emission component can be contributed by a pulsar wind nebula (PWN), which results from the interaction of the wind from the remnant NS with the preceding merger ejecta. Then, the discovery of such a non-thermal PWN emission can provide an evidence for the existence of the remnant NS. Similar to GRB 170817A, GRB 160821B is also one of the nearest short gamma-ray bursts (SGRBs). A candidate kilonova is widely believed to appear in the ultraviolet-optical-infrared afterglows of GRB 160821B. Here, by modeling the afterglow light curves and spectra of GRB 160821B, we find that the invoking of a non-thermal PWN emission can indeed be well consistent with the observational data. This may indicate that the formation of a stable massive NS could be not rare in the DNS merger events and, thus, the equation of state of the post-merger NSs should be stiff enough.
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3h after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between $270,mathrm{GeV}$ to $8.55,mathrm{TeV}$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
We present a simple analytic model, that captures the key features of the emission of radiation from material ejected by the merger of neutron stars (NS), and construct the multi-band and bolometric luminosity light curves of the transient associated with GW170817, AT,2017gfo, using all available data. The UV to IR emission is shown to be consistent with a single $approx0.05$,M$_odot$ component ejecta, with a power-law velocity distribution between $approx 0.1,c$ and $>0.3,c$, a low opacity, {$kappa<1$,cm$^2$,g$^{-1}$}, and a radioactive energy release rate consistent with an initial $Y_{rm e}<0.4$. The late time spectra require an opacity of $kappa_ uapprox0.1$,cm$^2$,g$^{-1}$ at 1 to $2mu$m. If this opacity is provided entirely by Lanthanides, their implied mass fraction is $X_{rm Ln}approx10^{-3}$, approximately 30 times below the value required to account for the solar abundance. The inferred value of $X_{rm Ln}$ is uncertain due to uncertainties in the estimates of IR opacities of heavy elements, which also do not allow the exclusion of a significant contribution to the opacity by other elements (the existence of a slower ejecta rich in Lanthanides, that does not contribute significantly to the luminosity, can also not be ruled out). The existence of a relatively massive, $approx 0.05$,M$_odot$, ejecta with high velocity and low opacity is in tension with the results of numerical simulations of NS mergers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا