Do you want to publish a course? Click here

VHE $gamma$-ray discovery and multi-wavelength study of the blazar 1ES 2322-409

90   0   0.0 ( 0 )
 Added by Santiago Pita
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A hotspot at a position compatible with the BL Lac object 1ES 2322-409 was serendipitously detected with H.E.S.S. during observations performed in 2004 and 2006 on the blazar PKS 2316-423. Additional data on 1ES 2322-409 were taken in 2011 and 2012, leading to a total live-time of 22.3h. Point-like very-high-energy (VHE; E>100GeV) $gamma$-ray emission is detected from a source centred on the 1ES 2322-409 position, with an excess of 116.7 events at a significance of 6.0$sigma$. The average VHE $gamma$-ray spectrum is well described with a power law with a photon index $Gamma=3.40pm0.66_{text{stat}}pm0.20_{text{sys}}$ and an integral flux $Phi(E>200GeV) = (3.11pm0.71_{rm stat}pm0.62_{rm sys})times10^{-12} cm^{-2} s^{-1}$, which corresponds to 1.1$%$ of the Crab nebula flux above 200 GeV. Multi-wavelength data obtained with Fermi LAT, Swift XRT and UVOT, RXTE PCA, ATOM, and additional data from WISE, GROND and Catalina, are also used to characterise the broad-band non-thermal emission of 1ES 2322-409. The multi-wavelength behaviour indicates day-scale variability. Swift UVOT and XRT data show strong variability at longer scales. A spectral energy distribution (SED) is built from contemporaneous observations obtained around a high state identified in Swift data. A modelling of the SED is performed with a stationary homogeneous one-zone synchrotron-self-Compton (SSC) leptonic model. The redshift of the source being unknown, two plausible values were tested for the modelling. A systematic scan of the model parameters space is performed, resulting in a well-constrained combination of values providing a good description of the broad-band behaviour of 1ES 2322-409.



rate research

Read More

Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significance of 9.4 sigma. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV gamma-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.
The high-frequency-peaked BL Lacertae object 1ES 0229+200 is a relatively distant (z = 0.1396), hard-spectrum (Gamma ~ 2.5), very-high-energy-emitting (E > 100 GeV) gamma-ray blazar. Very-high-energy measurements of this active galactic nucleus have been used to place constraints on the intensity of the extragalactic background light and the intergalactic magnetic field. A multi-wavelength study of this object centered around very-high-energy observations by VERITAS is presented. This study obtained, over a period of three years, an 11.7 standard deviation detection and an average integral flux F(E>300 GeV) = (23.3 +- 2.8_stat +- 5.8_sys) x 10^-9 photons m^-2 s^-1, or 1.7% of the Crab Nebulas flux (assuming the Crab Nebula spectrum measured by H.E.S.S). Supporting observations from Swift and RXTE are analyzed. The Swift observations are combined with previously published Fermi observations and the very-high-energy measurements to produce an overall spectral energy distribution which is then modeled assuming one-zone synchrotron-self-Compton emission. The chi^2 probability of the TeV flux being constant is 1.6%. This, when considered in combination with measured variability in the X-ray band, and the demonstrated variability of many TeV blazars, suggests that the use of blazars such as 1ES 0229+200 for intergalactic magnetic field studies may not be straightforward and challenges models that attribute hard TeV spectra to secondary gamma-ray production along the line of sight.
1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006-10 with H.E.S.S. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1sigma. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Gamma = 3.08pm0.42_{stat}pm0.20_{sys}. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission is significant at 8.3sigma in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the ATOM telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F_{0.3-7 keV} = 1.04^{+0.04}_{-0.05} times 10^{-11} erg.cm^{-2}.s^{-1} in the 0.3-7 keV range. Finally, all the available data are used to study the sources multi-wavelength properties. The SED can be reproduced using a simple one-zone SSC model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type.
206 - V. A. Acciari , E. Aliu , T. Arlen 2011
Multiwavelength observations of the high-frequency-peaked blazar 1ES2344+514 were performed from 2007 October to 2008 January. The campaign represents the first contemporaneous data on the object at very high energy (VHE, E >100 GeV) {gamma}-ray, X-ray, and UV energies. Observations with VERITAS in VHE {gamma}-rays yield a strong detection of 20 {sigma} with 633 excess events in a total exposure of 18.1 hours live-time. A strong VHE {gamma}-ray flare on 2007 December 7 is measured at F(>300 GeV) = (6.76 pm 0.62) times 10-11 ph cm-2 s-1, corresponding to 48% of the Crab Nebula flux. Excluding this flaring episode, nightly variability at lower fluxes is observed with a time-averaged mean of F(>300 GeV) = (1.06 pm 0.09) times 10-11 ph cm-2 s-1 (7.6% of the Crab Nebula flux). The differential photon spectrum between 390 GeV and 8.3 TeV for the time-averaged observations excluding 2007 December 7 is well described by a power law with a photon index of {Gamma} = 2.78 pm 0.09stat pm 0.15syst. Over the full period of VERITAS observations contemporaneous X-ray and UV data were taken with Swift and RXTE. The measured 2-10 keV flux ranged by a factor of ~7 during the campaign. On 2007 December 8 the highest ever observed X-ray flux from 1ES 2344+514 was measured by Swift XRT at a flux of F(2-10 keV) = (6.28 pm 0.31) times 10-11 erg cm-2 s-1. Evidence for a correlation between the X-ray flux and VHE {gamma}-ray flux on nightly time-scales is indicated with a Pearson correlation coefficient of r = 0.60 pm 0.11. Contemporaneous spectral energy distributions (SEDs) of 1ES 2344+514 are presented for two distinct flux states. A one-zone synchrotron self-Compton (SSC) model describes both SEDs using parameters consistent with previous SSC modeling of 1ES 2344+514 from non-contemporaneous observations.
The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا