Assignment Mechanisms under Distributional Constraints


Abstract in English

We study the assignment problem of objects to agents with heterogeneous preferences under distributional constraints. Each agent is associated with a publicly known type and has a private ordinal ranking over objects. We are interested in assigning as many agents as possible. Our first contribution is a generalization of the well-known and widely used serial dictatorship. Our mechanism maintains several desirable properties of serial dictatorship, including strategyproofness, Pareto efficiency, and computational tractability while satisfying the distributional constraints with a small error. We also propose a generalization of the probabilistic serial algorithm, which finds an ordinally efficient and envy-free assignment, and also satisfies the distributional constraints with a small error. We show, however, that no ordinally efficient and envy-free mechanism is also weakly strategyproof. Both of our algorithms assign at least the same number of students as the optimum fractional assignment.

Download