How does the stellar wind influence the radio morphology of a supernova remnant?


Abstract in English

We simulate the evolutions of the stellar wind and the supernova remnant (SNR) originating from a runaway massive star in an uniform Galactic environment based on the three-dimensional magnetohydrodynamics models. Taking the stellar wind into consideration, we can explain the radio morphologies of many supernova remnants. The directions of the kinematic velocity of the progenitor, the magnetic field and the line of sight are the most important factors influencing the morphologies. If the velocity is perpendicular to the magnetic field, the simulation will give us two different unilateral SNRs and a bilateral symmetric SNR. If the velocity is parallel to the magnetic field, we can obtain a bilateral asymmetric SNR and a quasi-circular SNR. Our simulations show the stellar wind plays a key role in the radio evolution of a SNR, which implies the Galactic global density and magnetic field distribution play a secondary role in shaping a SNR.

Download