We used Raman scattering to study the lattice and magnetic excitations in the hexagonal HoMnO3 single crystals. The E2 phonon mode at 237 cm-1 is affected by the magnetic order. This mode is related to the displacement of Mn and O ions in a-b plane and modulates the Mn-O-Mn bond angles in a-b plane and the in-plane Mn-Mn superexchange interaction. The mode at 269 cm-1 associated to the displacement of the apical Ho3+ ions along the c direction presents an abrupt change of slope at TN showing that the role of the rare earth ions can not be neglected in the magnetic transition. We have identified magnon and crystal field excitations. The temperature dependence of the magnetic excitations has been compared to the Mn and Ho moment and indicates that the exchange interaction pattern between Mn and Ho atoms drives the uniaxial anisotropy gap above the Mn-spin-rotation transition.
Multiferroic rare earth manganites attracted recent attention because of the coexistence of different types of magnetic and ferroelectric orders resulting in complex phase diagrams and a wealth of physical phenomena. The coupling and mutual interference of the different orders and the large magnetoelectric effect observed in several compounds are of fundamental interest and bear the potential for future applications in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. The physical mechanisms of the magnetoelectric effect and the origin of ferroelectric order at magnetic transitions have yet to be explored. We discuss multiferroic phenomena in the hexagonal HoMnO3 and show that the strong magneto-dielectric coupling is intimately related to the lattice strain induced by unusually large spin-phonon correlations.
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and increases with pressure, opposite to the experimental T_OO. We show that the tetragonal crystal-field splitting reduces T_KK further increasing the discrepancies with experiments. This proves that super-exchange effects, although very efficient, in the light of the experimentally observed trends, play a minor role for the melting of orbital ordering in rare-earth manganites.
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
We have employed resonant x-ray magnetic scattering to specifically probe the magnetic order of the rare-earth ions in multiferroic $mathrm{TbMn_2O_5}$. Two energy resonances were observed, one originated from the E1-E1 dipolar transition and the other from the E2-E2 quadrupolar transition. These resonances directly probe the valence 5d band and the partially occupied 4f band, respectively. First, full polarization analysis, which is a measurement of the scattered polarization as a function of incident polarization, confirmed a spin polarization of the terbium valence states (probed by the E1-E1 transition) by the $mathrm{Mn^{4+}}$ spin density in the commensurate phase. Second, full polarization analysis data were collected in the low-temperature incommensurate and commensurate phases when tuned to the E2-E2 resonance. By employing a least-squares fitting procedure, the spin orientations of the terbium ion sublattice were refined.
Using x-ray resonant magnetic scattering and x-ray magnetic circular dichroism, techniques that are element specific, we have elucidated the role of Ho3+ in multiferroic HoMnO3. In zero field, Ho3+ orders antiferromagnetically with moments aligned along the hexagonal c direction below 40 K, and undergoes a transition to another magnetic structure below 4.5 K. In applied electric fields of up to 1x10^7 V/m, the magnetic structure of Ho3+ remains unchanged.
J. Liu
,Y. Gallais
,M-A. Measson
.
(2018)
.
"The role of the rare earth in the lattice and magnetic coupling in multiferroic h-HoMnO3"
.
Maximilien Cazayous
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا