An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems


Abstract in English

As an extension of our previous work in Sun et.al (2018) [41], we develop a discontinuous Galerkin method for solving cross-diffusion systems with a formal gradient flow structure. These systems are associated with non-increasing entropy functionals. For a class of problems, the positivity (non-negativity) of solutions is also expected, which is implied by the physical model and is crucial to the entropy structure. The semi-discrete numerical scheme we propose is entropy stable. Furthermore, the scheme is also compatible with the positivity-preserving procedure in Zhang (2017) [42] in many scenarios. Hence the resulting fully discrete scheme is able to produce non-negative solutions. The method can be applied to both one-dimensional problems and two-dimensional problems on Cartesian meshes. Numerical examples are given to examine the performance of the method.

Download