Do you want to publish a course? Click here

Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreliable Environments

144   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.



rate research

Read More

To achieve reliability in distributed storage systems, data has usually been replicated across different nodes. However the increasing volume of data to be stored has motivated the introduction of erasure codes, a storage efficient alternative to replication, particularly suited for archival in data centers, where old datasets (rarely accessed) can be erasure encoded, while replicas are maintained only for the latest data. Many recent works consider the design of new storage-centric erasure codes for improved repairability. In contrast, this paper addresses the migration from replication to encoding: traditionally erasure coding is an atomic operation in that a single node with the whole object encodes and uploads all the encoded pieces. Although large datasets can be concurrently archived by distributing individual object encodings among different nodes, the network and computing capacity of individual nodes constrain the archival process due to such atomicity. We propose a new pipelined coding strategy that distributes the network and computing load of single-object encodings among different nodes, which also speeds up multiple object archival. We further present RapidRAID codes, an explicit family of pipelined erasure codes which provides fast archival without compromising either data reliability or storage overheads. Finally, we provide a real implementation of RapidRAID codes and benchmark its performance using both a cluster of 50 nodes and a set of Amazon EC2 instances. Experiments show that RapidRAID codes reduce a single objects coding time by up to 90%, while when multiple objects are encoded concurrently, the reduction is up to 20%.
Distributed storage systems for large clusters typically use replication to provide reliability. Recently, erasure codes have been used to reduce the large storage overhead of three-replicated systems. Reed-Solomon codes are the standard design choice and their high repair cost is often considered an unavoidable price to pay for high storage efficiency and high reliability. This paper shows how to overcome this limitation. We present a novel family of erasure codes that are efficiently repairable and offer higher reliability compared to Reed-Solomon codes. We show analytically that our codes are optimal on a recently identified tradeoff between locality and minimum distance. We implement our new codes in Hadoop HDFS and compare to a currently deployed HDFS module that uses Reed-Solomon codes. Our modified HDFS implementation shows a reduction of approximately 2x on the repair disk I/O and repair network traffic. The disadvantage of the new coding scheme is that it requires 14% more storage compared to Reed-Solomon codes, an overhead shown to be information theoretically optimal to obtain locality. Because the new codes repair failures faster, this provides higher reliability, which is orders of magnitude higher compared to replication.
Large-scale systems with all-flash arrays have become increasingly common in many computing segments. To make such systems resilient, we can adopt erasure coding such as Reed-Solomon (RS) code as an alternative to replication because erasure coding incurs a significantly lower storage overhead than replication. To understand the impact of using erasure coding on the system performance and other system aspects such as CPU utilization and network traffic, we build a storage cluster that consists of approximately 100 processor cores with more than 50 high-performance solid-state drives (SSDs), and evaluate the cluster with a popular open-source distributed parallel file system, called Ceph. Specifically, we analyze the behaviors of a system adopting erasure coding from the following five viewpoints, and compare with those of another system using replication: (1) storage system I/O performance; (2) computing and software overheads; (3) I/O amplification; (4) network traffic among storage nodes, and (5) impact of physical data layout on performance of RS-coded SSD arrays. For all these analyses, we examine two representative RS configurations, used by Google file systems, and compare them with triple replication employed by a typical parallel file system as a default fault tolerance mechanism. Lastly, we collect 96 block-level traces from the cluster and release them to the public domain for the use of other researchers.
In this paper we would like to share our experience for transforming a parallel code for a Computational Fluid Dynamics (CFD) problem into a parallel version for the RedisDG workflow engine. This system is able to capture heterogeneous and highly dynamic environments, thanks to opportunistic scheduling strategies. We show how to move to the field of HPC as a Service in order to use heterogeneous platforms. We mainly explain, through the CFD use case, how to transform the parallel code and we exhibit challenges to unfold the task graph dynamically in order to improve the overall performance (in a broad sense) of the workflow engine. We discuss in particular of the impact on the workflow engine of such dynamic feature. This paper states that new models for High Performance Computing are possible, under the condition we revisit our mind in the direction of the potential of new paradigms such as cloud, edge computing.
In this paper, we study the problem of storing an archive of versioned data in a reliable and efficient manner in distributed storage systems. We propose a new storage technique called differential erasure coding (DEC) where the differences (deltas) between subseque
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا