Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2


Abstract in English

Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping in semiconductors. Specifically, deep in-gap defect states of chalcogen vacancies have been associated with intriguing phenomena in monolayer transition metal dichalcogenides (TMDs). Here, we report the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS2 by a combination of CO-tip noncontact atomic force microscopy (nc-AFM) and scanning tunneling microscopy (STM). Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states of the vacancy provide a unique fingerprint of this defect. Direct imaging of the defect orbitals by STM and state-of-the-art GW calculations reveal that the large splitting of 252 meV between these defect states is induced by spin-orbit coupling. The controllable incorporation and potential decoration of chalcogen vacancies provide a new route to tailor the optical, catalytic and magnetic properties of TMDs.

Download