Fast QR iterations for unitary plus low rank matrices


Abstract in English

Some fast algorithms for computing the eigenvalues of a block companion matrix $A = U + XY^H$, where $Uin mathbb C^{ntimes n}$ is unitary block circulant and $X, Y inmathbb{C}^{n times k}$, have recently appeared in the literature. Most of these algorithms rely on the decomposition of $A$ as product of scalar companion matrices which turns into a factored representation of the Hessenberg reduction of $A$. In this paper we generalize the approach to encompass Hessenberg matrices of the form $A=U + XY^H$ where $U$ is a general unitary matrix. A remarkable case is $U$ unitary diagonal which makes possible to deal with interpolation techniques for rootfinding problems and nonlinear eigenvalue problems. Our extension exploits the properties of a larger matrix $hat A$ obtained by a certain embedding of the Hessenberg reduction of $A$ suitable to maintain its structural properties. We show that $hat A$ can be factored as product of lower and upper unitary Hessenberg matrices possibly perturbed in the first $k$ rows, and, moreover, such a data-sparse representation is well suited for the design of fast eigensolvers based on the QR/QZ iteration. The resulting algorithm is fast and backward stable.

Download