Anomalous diffusion in random dynamical systems


Abstract in English

Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a second, non-chaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. What type of diffusion is exhibited by this {em random dynamical system}? We show that the resulting dynamics can generate anomalous diffusion, where in contrast to Brownian normal diffusion the mean square displacement of an ensemble of particles increases nonlinearly in time. Randomly mixing simple deterministic walks on the line we find anomalous dynamics characterised by ageing, weak ergodicity breaking, breaking of self-averaging and infinite invariant densities. This result holds for general types of noise and for perturbing nonlinear dynamics in bifurcation scenarios.

Download