Effects of long range hopping in the Bose-Hubbard model


Abstract in English

We investigate the effects of an extended Bose-Hubbard model with a long range hopping term on the Mott insulator-superfluid quantum phase transition. We consider the effects of a power law decaying hopping term and show that the Mott phase is shrinked in the parameters space. We provide an exact solution for one dimensional lattices and then two approximations for higher dimensions, each one valid in a specific range of the power law exponent: a continuum approximation and a discrete one. Finally, we extend these results to a more realistic situation, where the long range hopping term is made by a power law factor and a screening exponential term and study the main effects on the Mott lobes.

Download