No Arabic abstract
In a series of three papers, Eadie et al. developed a hierarchical Bayesian method to estimate the Milky Way Galaxys mass given a physical model for the potential, a measurement model, and kinematic data of test particles such as globular clusters (GCs) or halo stars in the Galaxys halo. The Galaxys virial mass was found to have a 95% Bayesian credible region (c.r.) of $(0.67, 1.09) times 10^{12} M_{odot}$. In the present study, we test the hierarchical Bayesian method against simulated galaxies created in the McMaster Unbiased Galaxy Simulations 2 (MUGS2), for which the true mass is known. We estimate the masses of MUGS2 galaxies using GC analogs from the simulations as tracers. The analysis, completed as a blind test, recovers the true $M_{200}$ of the MUGS2 galaxies within 95% Bayesian c.r. in 8 out of 18 cases. Of the 10 galaxy masses that were not recovered within the 95% c.r., a large subset have posterior distributions that occupy extreme ends of the parameter space allowed by the priors. A few incorrect mass estimates are explained by the exceptional evolution history of the galaxies. We also find evidence that the model cannot describe both the galaxies inner and outer structure simultaneously in some cases. After removing the GC analogs associated with the galactic disks, the true masses were found more reliably (13 out of 18 were predicted within the c.r.). Finally, we discuss how representative the GC analogs are of the real GC population in the Milky Way.
We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie, Harris, & Widrow (2015) and Eadie & Harris (2016) and builds upon the preliminary reports by Eadie et al (2015a,c). The method uses a distribution function $f(mathcal{E},L)$ to model the galaxy and kinematic data from satellite objects such as globular clusters (GCs) to trace the Galaxys gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie & Harris (2016), and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and incorporate all possible GC data, finding a cumulative mass profile with Bayesian credible regions. This profile implies a mass within $125$kpc of $4.8times10^{11}M_{odot}$ with a 95% Bayesian credible region of $(4.0-5.8)times10^{11}M_{odot}$. Our results also provide estimates of the true specific energies of all the GCs. By comparing these estimated energies to the measured energies of GCs with complete velocity measurements, we observe that (the few) remote tracers with complete measurements may play a large role in determining a total mass estimate of the Galaxy. Thus, our study stresses the need for more remote tracers with complete velocity measurements.
The separation of the Milky Way disk into a thin and thick component is supported by differences in the spatial, kinematic and metallicity distributions of their stars. These differences have led to the view that the thick disk formed early via a cataclysmic event and constitutes fossil evidence of the hierarchical growth of the Milky Way. We show here, using N-body simulations, how a double-exponential vertical structure, with stellar populations displaying similar dichotomies can arise purely through internal evolution. In this picture, stars migrate radially, while retaining nearly circular orbits, as described by Sellwood & Binney (2002). As stars move outwards they populate a thickened component. Such stars found at the present time in the solar neighborhood formed early in the disks history at smaller radii where stars are more metal-poor and alpha-enhanced, leading to the properties observed for thick disk stars. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property as observed. This scenario is supported by the SDSS observation that stars in the transition region do not show any correlation between rotational velocity and metallicity. The good qualitative agreement between our simulation and observations in the Milky Way hint that the thick disk may be a ubiquitous galaxy feature generated by stellar migration. Nonetheless, we cannot exclude that some fraction of the thick disk is a fossil of a past more violent history, nor can this scenario explain thick disks in all galaxies.
We present a semi-empirical, largely model-independent approach for estimating Galactic birth radii, r_birth, for Milky Way disk stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disk lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS-GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]_ISM(r, t), by requiring a physically meaningful r_birth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~-0.15 dex/kpc at the beginning of disk formation, to its measured present-day value (-0.07 dex/kpc). We present several chemo-kinematical relations in terms of mono-r_birth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disk, consistent with thick disk formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age-velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age-metallicity relation (AMR) is the result of the superposition of the AMRs of mono-r_birth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3+-0.6 kpc, for a current Galactocentric radius of 8 kpc.
With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in a cosmological context, to test the physics of both dark matter and galaxy formation. We present ananke, a framework for generating synthetic phase-space surveys from high-resolution baryonic simulations, and use it to generate a suite of synthetic surveys resembling Gaia DR2 in data structure, magnitude limits, and observational errors. We use three cosmological simulations of Milky-Way-mass galaxies from the Latte suite of the Feedback In Realistic Environments (FIRE) project, which feature self-consistent clustering of star formation in dense molecular clouds and thin stellar/gaseous disks in live cosmological halos with satellite dwarf galaxies and stellar halos. We select three solar viewpoints from each simulation to generate nine synthetic Gaia-like surveys. We sample synthetic stars by assuming each star particle (of mass 7070 $M_{odot}$) represents a single stellar population. At each viewpoint, we compute dust extinction from the simulated gas metallicity distribution and apply a simple error model to produce a synthetic Gaia-like survey that includes both observational properties and a pointer to the generating star particle. We provide the complete simulation snapshot at $z = 0$ for each simulated galaxy. We describe data access points, the data model, and plans for future upgrades. These synthetic surveys provide a tool for the scientific community to test analysis methods and interpret Gaia data.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.