Do you want to publish a course? Click here

Gamma-ray quasi-periodicities of blazars. A cautious approach

59   0   0.0 ( 0 )
 Added by Stefano Covino
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The availability of about a decade of uninterrupted sky monitoring by the Fermi satellite has made possible to study long-term quasi-periodicities for high-energy sources. It is therefore not a surprise that for several blazars in the recent literature claims for such periodicities, with various level of confidence, have been reported. The confirmation of these findings could be of tremendous importance for the physical description of this category of sources and have consequences for the gravitational wave background interpretation. In this work we carry out a temporal analysis of the Fermi light curves for several of the sources mentioned in recent literature by means of a homogeneous procedure and find that, globally, no strong cases for blazar year-long quasi-periodicities can be confirmed. The computed power spectral densities are all essentially consistent with being generated by red-noise only. We further discuss the meaning and the limitations of the present analysis.



rate research

Read More

101 - Stefano Covino 2017
We examine the 2008-2016 gamma-ray and optical light curves of a number of bright Fermi blazars. In a fraction of them, the periodograms show possible evidence of quasi-periodicities related in the two bands. This coincidence strengthens their physical meaning. Comparing with results from the periodicity search of quasars, the presence of quasi-periodicities in blazars suggests that the basic condition for its observability is related to the relativistic jet in the observer direction, but the overall picture remains uncertain.
The detection of periodicities in light curves of active galacticnuclei (AGN) could have profound consequences for our understanding of the nature and radiation physics of these objects. At high energies (HE; E>100 MeV) 5 blazars (PG 1553+113,PKS 2155-304, 0426-380, 0537-441, 0301-243) have been reported to show year-like quasi-periodic variations (QPVs) with significance >3 sig. As these findings are based on few cycles only, care needs to be taken to properly account for random variations which can produce intervals of seemingly periodic behaviour. We present results of an updated timing analysis for 6 blazars (adding PKS 0447-439), utilizing suitable methods to evaluate their long term variability properties and to search for QPVs in their light curves. We generate gamma-ray light curves covering almost 10 years, study their timing properties and search for QPVs using the Lomb-Scargle Periodogram and the Wavelet Z-transform. Extended Monte Carlo simulations are used to evaluate the statistical significance. Comparing their probability density functions (PDFs), all sources (except PG 1553+113) exhibit a clear deviation from a Gaussian distribution, but are consistent with being log-normal, suggesting that the underlying variability is of a non-linear, multiplicative nature. Apart from PKS 0301-243 the power spectral density for all investigated blazars is close to flicker noise (PL slope -1). Possible QPVs with a local significance ~ 3 sig. are found in all light curves (apart from PKS 0426-380 and 0537-441), with observed periods between (1.7-2.8) yr. The evidence is strongly reduced, however, if evaluated in terms of a global significance. Our results advise caution as to the significance of reported year-like HE QPVs in blazars. Somewhat surprisingly, the putative, redshift-corrected periods are all clustering around 1.6 yr. We speculate on possible implications for QPV generation.
We have recently proposed a new simplified scenario where blazars are classified as flat-spectrum radio quasars (FSRQs) or BL Lacs according to the prescriptions of unified schemes, and to a varying combination of Doppler boosted radiation from the jet, emission from the accretion disk, the broad line region, and light from the host galaxy. Here we extend our approach, previously applied to radio and X-ray surveys, to the gamma-ray band and, through detailed Monte Carlo simulations, compare our predictions to Fermi-LAT survey data. Our simulations are in remarkable agreement with the overall observational results, including the percentages of BL Lacs and FSRQs, the fraction of redshift-less objects, and the redshift, synchrotron peak, and gamma-ray spectral index distributions. The strength and large scatter of the oft-debated observed Gamma-ray -- radio flux density correlation is also reproduced. In addition, we predict that almost 3/4 of Fermi-LAT BL Lacs, and basically all of those without redshift determination, are actually FSRQs with their emission lines swamped by the non-thermal continuum and as such should be considered. Finally, several of the currently unassociated high Galactic latitude Fermi sources are expected to be radio-faint blazars displaying a pure elliptical galaxy optical spectrum.
Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
151 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا