Improving the performance of Ge$_2$Sb$_2$Te$_5$ materials via nickel doping: Towards RF-compatible phase-change devices


Abstract in English

High-speed electrical switching of Ge2Sb2Te5 (GST) remains a challenging task due to the large impedance mismatch between the low-conductivity amorphous state and the high-conductivity crystalline state. In this letter, we demonstrate an effective doping scheme using nickel to reduce the resistivity contrast between the amorphous and crystalline states by nearly three orders of magnitude. Most importantly, our results show that doping produces the desired electrical performance without adversely affecting the films optical properties. The nickel doping level is approximately 2% and the lattice structure remains nearly unchanged when compared with undoped-GST. The refractive indices at amorphous and crystalline states were obtained using ellipsometry which echoes the results from XRD. The materials thermal transport properties are measured using time-domain thermoreflectance (TDTR), showing no change upon doping. The advantages of this doping system will open up new opportunities for designing electrically reconfigurable high speed optical elements in the near-infrared spectrum.

Download