Do you want to publish a course? Click here

Gate defined quantum dot realized in a single crystalline InSb nanosheet

313   0   0.0 ( 0 )
 Added by Hongqi Xu Professor
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystalline InSb nanosheet is an emerging planar semiconductor material with potential applications in electronics, infrared optoelectronics, spintronics and topological quantum computing. Here we report on realization of a quantum dot device from a single crystalline InSb nanosheet grown by molecular-beam epitaxy. The device is fabricated from the nanosheet on a Si/SiO2 substrate and the quantum dot confinement is achieved by top gate technique. Transport measurements show a series of Coulomb diamonds, demonstrating that the quantum dot is well defined and highly tunable. Tunable, gate-defined, planar InSb quantum dots offer a renewed platform for developing semiconductor-based quantum computation technology.



rate research

Read More

We report on the transport study of a double quantum dot (DQD) device made from a freestanding, single crystalline InSb nanosheet. The freestanding nanosheet is grown by molecular beam epitaxy and the DQD is defined by top gate technique. Through the transport measurements, we demonstrate how a single quantum dot (QD) and a DQD can be defined in an InSb nanosheet by tuning voltages applied to the top gates. We also measure the charge stability diagrams of the DQD and show that the charge states and the inter-dot coupling between the two individual QDs in the DQD can be efficiently regulated by the top gates. Numerical simulations for the potential profile and charge density distribution in the DQD have been performed and the results support the experimental findings and provide a better understanding of fabrication and transport characteristics of the DQD in the InSb nanosheet. The achieved DQD in the two-dimensional InSb nanosheet possesses pronounced benefits in lateral scaling and can thus serve as a new building block for developments of quantum computation and quantum simulation technologies.
A dual-gate InSb nanosheet field-effect device is realized and is used to investigate the physical origin and the controllability of the spin-orbit interaction in a narrow bandgap semiconductor InSb nanosheet. We demonstrate that by applying a voltage over the dual gate, efficiently tuning of the spin-orbit interaction in the InSb nanosheet can be achieved. We also find the presence of an intrinsic spin-orbit interaction in the InSb nanosheet at zero dual-gate voltage and identify its physical origin as a build-in asymmetry in the device layer structure. Having a strong and controllable spin-orbit interaction in an InSb nanosheet could simplify the design and realization of spintronic deceives, spin-based quantum devices and topological quantum devices.
307 - H.W.Liu , T.Fujisawa , H.Inokawa 2008
We report electron transport measurements of a silicon double dot formed in multi-gated metal-oxide-semiconductor structures with a 15-nm-thick silicon-on-insulator layer. Tunable tunnel coupling enables us to observe an excitation spectrum in weakly coupled dots and an energy level anticrossing in strongly coupled ones. Such a quantum dot molecule with both charge and energy quantization provides the essential prerequisite for future implementation of silicon-based quantum computations.
We investigate an electrostatically defined quantum point contact in a high-mobility InSb two-dimensional electron gas. Well-defined conductance plateaus are observed, and the subband structure of the quantum point contact is extracted from finite-bias measurements. The Zeeman splitting is measured in both in-plane and out-of-plane magnetic fields. We find an in-plane g factor $|g_{parallel}^* | approx$ 40. The out-of-plane g factor is measured to be $|g_{perp}^* | approx$ 50, which is close to the g factor in the bulk.
With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi excitons down to a single indirect exciton. In the few exciton regime, we observe discrete emission lines reflecting the interplay of dipolar interexcitonic repulsion and spatial quantization. The quantum dot states are tunable by gate voltage and employing a magnetic field results in a diamagnetic shift. The scheme introduces a new gate-defined platform for creating and controlling optically active quantum dots and opens the route to lithographically defined coupled quantum dot arrays with tunable in-plane coupling and voltage-controlled optical properties of single charge and spin states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا