Do you want to publish a course? Click here

ComDMFT: a Massively Parallel Computer Package for the Electronic Structure of Correlated-Electron Systems

49   0   0.0 ( 0 )
 Added by SangKook Choi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems (CES). Our approach is a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT). The non-local part of the electronic self-energy is treated within ab initio LQSGW and the local strong correlation is treated within DMFT. In addition to ab initio LQSGW+DMFT, charge self-consistent LDA+DMFT methodology is also implemented, enabling multiple methods in one open-source platform for the electronic structure of CES. This package can be extended for future developments to implement other methodologies to treat CES

rate research

Read More

73 - V.A. Gavrichkov 2005
A novel hybrid scheme is proposed. The {it ab initio} LDA calculation is used to construct the Wannier functions and obtain single electron and Coulomb parameters of the multiband Hubbard-type model. In strong correlation regime the electronic structure within multiband Hubbard model is calculated by the Generalized Tight-Binding (GTB) method, that combines the exact diagonalization of the model Hamiltonian for a small cluster (unit cell) with perturbation treatment of the intercluster hopping and interactions. For undoped La$_2$CuO$_4$ and Nd$_2$CuO$_4$ this scheme results in charge transfer insulators with correct values of gaps and dispersions of bands in agreement to the ARPES data.
The so-called minimal models of unconventional superconductivity are lattice models of interacting electrons derived from materials in which electron pairing arises from purely repulsive interactions. Showing unambiguously that a minimal model actually can have a superconducting ground state remains a challenge at nonperturbative interactions. We make a significant step in this direction by computing ground states of the 2D mbox{U-V} Hubbard model - the minimal model of the quasi-1D superconductors - by parallelized DMRG, which allows for systematic control of any bias and that is sign-problem-free. Using distributed-memory supercomputers and leveraging the advantages of the mbox{U-V} model, we can treat unprecedented sizes of 2D strips and extrapolate their spin gap both to zero approximation error and the thermodynamic limit. Our results for the spin gap are shown to be compatible with a spin excitation spectrum that is either fully gapped or has zeros only in discrete points, and conversely that a Fermi liquid or magnetically ordered ground state is incompatible with them. Coupled with the enhancement to short-range correlations that we find exclusively in the $d_{xy}$ pairing-channel, this allows us to build an indirect case for the ground state of this model having superconducting order in the full 2D limit, and ruling out the other main possible phases, magnetic orders and Fermi liquids.
The Kondo insulator SmB6 has long been known to exhibit low temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser- and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to 4 meV), whose temperature dependence is contingent upon the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers points topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide by-far the strongest evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological surface Fermi surface (TSS). Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of the correlated electron material SmB6.
The method of electronic structure calculations for strongly correlated disordered materials is developed employing the basic idea of coherent potential approximation (CPA). Evolution of electronic structure and spin magnetic moment value with concentration $x$ in strongly correlated Ni$_{1-x}$Zn$_x$O solid solutions is investigated in the frame of this method. The obtained values of energy gap and magnetic moment are in agreement with the available experimental data.
117 - XiaoYu Deng , Xi Dai , Zhong Fang 2007
Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO$_3$, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا