Do you want to publish a course? Click here

Posterior Prototyping: Bridging the Gap between Bayesian Record Linkage and Regression

73   0   0.0 ( 0 )
 Added by Andee Kaplan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Record linkage (entity resolution or de-deduplication) is the process of merging noisy databases to remove duplicate entities. While record linkage removes duplicate entities from the data, many researchers are interested in performing inference, prediction or post-linkage analysis on the linked data, which we call the downstream task. Depending on the downstream task, one may wish to find the most representative record before performing the post-linkage analysis. Motivated by the downstream task, we propose first performing record linkage using a Bayesian model and then choosing representative records through prototyping. Given the information about the representative records, we then explore two downstream tasks - linear regression and binary classification via logistic regression. In addition, we explore how error propagation occurs in both of these settings. We provide thorough empirical studies for our proposed methodology, and conclude with a discussion of practical insights into our work.



rate research

Read More

Record linkage (de-duplication or entity resolution) is the process of merging noisy databases to remove duplicate entities. While record linkage removes duplicate entities from such databases, the downstream task is any inferential, predictive, or post-linkage task on the linked data. One goal of the downstream task is obtaining a larger reference data set, allowing one to perform more accurate statistical analyses. In addition, there is inherent record linkage uncertainty passed to the downstream task. Motivated by the above, we propose a generalized Bayesian record linkage method and consider multiple regression analysis as the downstream task. Records are linked via a random partition model, which allows for a wide class to be considered. In addition, we jointly model the record linkage and downstream task, which allows one to account for the record linkage uncertainty exactly. Moreover, one is able to generate a feedback propagation mechanism of the information from the proposed Bayesian record linkage model into the downstream task. This feedback effect is essential to eliminate potential biases that can jeopardize resulting downstream task. We apply our methodology to multiple linear regression, and illustrate empirically that the feedback effect is able to improve the performance of record linkage.
112 - Michael D. Larsen 2012
In record linkage (RL), or exact file matching, the goal is to identify the links between entities with information on two or more files. RL is an important activity in areas including counting the population, enhancing survey frames and data, and conducting epidemiological and follow-up studies. RL is challenging when files are very large, no accurate personal identification (ID) number is present on all files for all units, and some information is recorded with error. Without an unique ID number one must rely on comparisons of names, addresses, dates, and other information to find the links. Latent class models can be used to automatically score the value of information for determining match status. Data for fitting models come from comparisons made within groups of units that pass initial file blocking requirements. Data distributions can vary across blocks. This article examines the use of prior information and hierarchical latent class models in the context of RL.
Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal nodes of recursive partitioning. Trees are powerful, yet susceptible to over-fitting. Strategies against overfitting have traditionally relied on pruning greedily grown trees. The Bayesian framework offers an alternative remedy against overfitting through priors. Roughly speaking, a good prior charges smaller trees where overfitting does not occur. While the consistency of random histograms, trees and their ensembles has been studied quite extensively, the theoretical understanding of the Bayesian counterparts has been missing. In this paper, we take a step towards understanding why/when do Bayesian trees and their ensembles not overfit. To address this question, we study the speed at which the posterior concentrates around the true smooth regression function. We propose a spike-and-tree variant of the popular Bayesian CART prior and establish new theoretical results showing that regression trees (and their ensembles) (a) are capable of recovering smooth regression surfaces, achieving optimal rates up to a log factor, (b) can adapt to the unknown level of smoothness and (c) can perform effective dimension reduction when p>n. These results provide a piece of missing theoretical evidence explaining why Bayesian trees (and additive variants thereof) have worked so well in practice.
76 - Ying Jin , Weilin Fu , Jian Kang 2019
Interpretability is crucial for machine learning in many scenarios such as quantitative finance, banking, healthcare, etc. Symbolic regression (SR) is a classic interpretable machine learning method by bridging X and Y using mathematical expressions composed of some basic functions. However, the search space of all possible expressions grows exponentially with the length of the expression, making it infeasible for enumeration. Genetic programming (GP) has been traditionally and commonly used in SR to search for the optimal solution, but it suffers from several limitations, e.g. the difficulty in incorporating prior knowledge; overly-complicated output expression and reduced interpretability etc. To address these issues, we propose a new method to fit SR under a Bayesian framework. Firstly, Bayesian model can naturally incorporate prior knowledge (e.g., preference of basis functions, operators and raw features) to improve the efficiency of fitting SR. Secondly, to improve interpretability of expressions in SR, we aim to capture concise but informative signals. To this end, we assume the expected signal has an additive structure, i.e., a linear combination of several concise expressions, whose complexity is controlled by a well-designed prior distribution. In our setup, each expression is characterized by a symbolic tree, and the proposed SR model could be solved by sampling symbolic trees from the posterior distribution using an efficient Markov chain Monte Carlo (MCMC) algorithm. Finally, compared with GP, the proposed BSR(Bayesian Symbolic Regression) method saves computer memory with no need to keep an updated genome pool. Numerical experiments show that, compared with GP, the solutions of BSR are closer to the ground truth and the expressions are more concise. Meanwhile we find the solution of BSR is robust to hyper-parameter specifications such as the number of trees.
When interacting with objects through cameras, or pictures, users often have a specific intent. For example, they may want to perform a visual search. However, most object detection models ignore the user intent, relying on image pixels as their only input. This often leads to incorrect results, such as lack of a high-confidence detection on the object of interest, or detection with a wrong class label. In this paper we investigate techniques to modulate standard object detectors to explicitly account for the user intent, expressed as an embedding of a simple query. Compared to standard object detectors, query-modulated detectors show superior performance at detecting objects for a given label of interest. Thanks to large-scale training data synthesized from standard object detection annotations, query-modulated detectors can also outperform specialized referring expression recognition systems. Furthermore, they can be simultaneously trained to solve for both query-modulated detection and standard object detection.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا