Do you want to publish a course? Click here

Lorentz ratio of a compensated metal

291   0   0.0 ( 0 )
 Added by Songci Li
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A violation of the Wiedemann-Franz law in a metal can be quantified by comparing the Lorentz ratio, $L=kapparho/T$, where $kappa$ is the thermal conductivity and $rho$ is the electrical resistivity, with the universal Sommerfeld constant, $L_0=(pi^2/3) (k_B/e)^2$. We obtain the Lorentz ratio of a clean compensated metal with intercarrier interaction as the dominant scattering mechanism by solving exactly the system of coupled integral Boltzmann equations. The Lorentz ratio is shown to assume a particular simple form in the forward-scattering limit: $L/L_0=overline{Theta^2}/2$, where $Theta$ is the scattering angle. In this limit, $L/L_0$ can be arbitrarily small. We also show how the same result can be obtained without the benefit of an exact solution. We discuss how a strong downward violation of the Wiedemann-Franz law in a type-II Weyl semimetal WP$_2$ can be explained within our model.



rate research

Read More

NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate these physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures.
We study the low-temperature properties of the generalized Anderson impurity model in which two localized configurations, one with two doublets and the other with a triplet, are mixed by two degenerate conduction channels. By using the numerical renormalization group and the non-crossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium conductance for several values of the model parameters. Marked differences with respect to the conventional one-channel spin $s=1/2$ Anderson model, that can be traced as hallmarks of an impurity spin $S=1$, are found in the Kondo temperature, the width and position of the charge transfer peak, as well as the temperature dependence of the equilibrium conductance. Furthermore, we analyze the rich effects of a single-ion magnetic anisotropy $D$ on the Kondo behavior. In particular, as shown before, for large enough positive $D$ the system behaves as a non-Landau Fermi liquid that cannot be adiabatically connected to a non-interacting system turning off the interactions. For negative $D$ the Kondo effect is strongly suppressed. The model studied is suitable for a comprehensive analysis for recent investigations of a single Ni impurity embedded into an Au chain.
We theoretically study physical properties of the low-energy quasiparticle excitations at the vortex core in the full-gap superconducting state of the Kondo lattice coupled to compensated metals. Based on the mean-field description of the superconducting state, we numerically solve the Bogoliubov-de Gennes (BdG) equations for the tight-binding Hamiltonian. The isolated vortex is characterized by a length scale independent of the magnitude of the interaction and the energy level of the core bound state is the same order as the bulk gap. These properties are in strong contrast to the conventional s-wave superconductor. To gain further insights, we also consider the effective Hamiltonian in the continuous limit and construct the theoretical framework of the quasiclassical Greens function of conduction electrons. With the use of the Kramer-Pesch approximation, we analytically derive the spectral function describing the quasiparticle excitations which is consistent with the numerics. It has been revealed that the properties of the vortex bound state are closely connected to the characteristic odd frequency dependence of both the normal and anomalous self-energies which is proportional to the inverse of frequency.
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effective mass $m^ast$, and then include random interactions which lead to fermion spectral functions with frequency scaling with $k_B T/hbar$. The resistivity, $rho$, obeys the Drude formula $rho = m^ast/(n e^2 tau_{textrm{tr}})$, where $n$ is the density of fermions, and the transport scattering rate is $1/tau_{textrm{tr}} = f , k_B T/hbar$; we find $f$ of order unity, and essentially independent of the strength and form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize $m^ast$, while resonant processes are shown to produce the Planckian behavior.
The discovery of materials with improved functionality can be accelerated by rational material design. Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا