Do you want to publish a course? Click here

Gradient flow structure and exponential decay of the sandwiched Renyi divergence for primitive Lindblad equations with GNS-detailed balance

57   0   0.0 ( 0 )
 Added by Yu Cao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the entropy production of the sandwiched Renyi divergence under the primitive Lindblad equation with GNS-detailed balance. We prove that the Lindblad equation can be identified as the gradient flow of the sandwiched Renyi divergence of any order ${alpha} in (0, infty)$. This extends a previous result by Carlen and Maas [Journal of Functional Analysis, 273(5), 1810-1869] for the quantum relative entropy (i.e., ${alpha} = 1$). Moreover, we show that the sandwiched Renyi divergence of any order ${alpha} in (0, infty)$ decays exponentially fast under the time-evolution of such a Lindblad equation.



rate research

Read More

73 - Yu Cao , Jianfeng Lu , Yulong Lu 2018
We prove the exponential convergence to the equilibrium, quantified by Renyi divergence, of the solution of the Fokker-Planck equation with drift given by the gradient of a strictly convex potential. This extends the classical exponential decay result on the relative entropy for the same equation.
A systematic theory of product and diagonal states is developed for tensor products of $mathbb Z_2$-graded $*$-algebras, as well as $mathbb Z_2$-graded $C^*$-algebras. As a preliminary step to achieve this goal, we provide the construction of a {it fermionic $C^*$-tensor product} of $mathbb Z_2$-graded $C^*$-algebras. Twisted duals of positive linear maps between von Neumann algebras are then studied, and applied to solve a positivity problem on the infinite Fermi lattice. Lastly, these results are used to define fermionic detailed balance (which includes the definition for the usual tensor product as a particular case) in general $C^*$-systems with gradation of type $mathbb Z_2$, by viewing such a system as part of a compound system and making use of a diagonal state.
We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fast reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP convergence, i.e. convergence in the sense of the Energy-Dissipation Principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.
Fawzi and Fawzi recently defined the sharp Renyi divergence, $D_alpha^#$, for $alpha in (1, infty)$, as an additional quantum Renyi divergence with nice mathematical properties and applications in quantum channel discrimination and quantum communication. One of their open questions was the limit ${alpha} to 1$ of this divergence. By finding a new expression of the sharp divergence in terms of a minimization of the geometric Renyi divergence, we show that this limit is equal to the Belavkin-Staszewski relative entropy. Analogous minimizations of arbitrary generalized divergences lead to a new family of generalized divergences that we call kringel divergences, and for which we prove various properties including the data-processing inequality.
In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal viscosity regime. Setting $varepsilon >0$ to be the small aspect ratio of the vertical to the horizontal scales of the domain, we investigate the case when the horizontal and vertical viscosities in the incompressible three-dimensional Navier-Stokes equations are of orders $O(1)$ and $O(varepsilon^alpha)$, respectively, with $alpha>2$, for which the limiting system is the primitive equations with only horizontal viscosity as $varepsilon$ tends to zero. In particular we show that for well prepared initial data the solutions of the scaled incompressible three-dimensional Navier-Stokes equations converge strongly, in any finite interval of time, to the corresponding solutions of the anisotropic primitive equations with only horizontal viscosities, as $varepsilon$ tends to zero, and that the convergence rate is of order $Oleft(varepsilon^fracbeta2right)$, where $beta=min{alpha-2,2}$. Note that this result is different from the case $alpha=2$ studied in [Li, J.; Titi, E.S.: emph{The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: Rigorous justification of the hydrostatic approximation}, J. Math. Pures Appl., textbf{124} rm(2019), 30--58], where the limiting system is the primitive equations with full viscosities and the convergence is globally in time and its rate of order $Oleft(varepsilonright)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا