Do you want to publish a course? Click here

On Theory for BART

63   0   0.0 ( 0 )
 Added by Veronika Rockova
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Ensemble learning is a statistical paradigm built on the premise that many weak learners can perform exceptionally well when deployed collectively. The BART method of Chipman et al. (2010) is a prominent example of Bayesian ensemble learning, where each learner is a tree. Due to its impressive performance, BART has received a lot of attention from practitioners. Despite its wide popularity, however, theoretical studies of BART have begun emerging only very recently. Laying the foundations for the theoretical analysis of Bayesian forests, Rockova and van der Pas (2017) showed optimal posterior concentration under conditionally uniform tree priors. These priors deviate from the actual priors implemented in BART. Here, we study the exact BART prior and propose a simple modification so that it also enjoys optimality properties. To this end, we dive into branching process theory. We obtain tail bounds for the distribution of total progeny under heterogeneous Galton-Watson (GW) processes exploiting their connection to random walks. We conclude with a result stating the optimal rate of posterior convergence for BART.



rate research

Read More

The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a variety of contexts including non parametric regression and classification. Here we introduce a BART scheme for estimating the intensity of inhomogeneous Poisson Processes. Poisson intensity estimation is a vital task in various applications including medical imaging, astrophysics and network traffic analysis. Our approach enables full posterior inference of the intensity in a nonparametric regression setting. We demonstrate the performance of our scheme through simulation studies on synthetic and real datasets in one and two dimensions, and compare our approach to alternative approaches.
Variational inference has become one of the most widely used methods in latent variable modeling. In its basic form, variational inference employs a fully factorized variational distribution and minimizes its KL divergence to the posterior. As the minimization can only be carried out approximately, this approximation induces a bias. In this paper, we revisit perturbation theory as a powerful way of improving the variational approximation. Perturbation theory relies on a form of Taylor expansion of the log marginal likelihood, vaguely in terms of the log ratio of the true posterior and its variational approximation. While first order terms give the classical variational bound, higher-order terms yield corrections that tighten it. However, traditional perturbation theory does not provide a lower bound, making it inapt for stochastic optimization. In this paper, we present a similar yet alternative way of deriving corrections to the ELBO that resemble perturbation theory, but that result in a valid bound. We show in experiments on Gaussian Processes and Variational Autoencoders that the new bounds are more mass covering, and that the resulting posterior covariances are closer to the true posterior and lead to higher likelihoods on held-out data.
The goal of item response theoretic (IRT) models is to provide estimates of latent traits from binary observed indicators and at the same time to learn the item response functions (IRFs) that map from latent trait to observed response. However, in many cases observed behavior can deviate significantly from the parametric assumptions of traditional IRT models. Nonparametric IRT models overcome these challenges by relaxing assumptions about the form of the IRFs, but standard tools are unable to simultaneously estimate flexible IRFs and recover ability estimates for respondents. We propose a Bayesian nonparametric model that solves this problem by placing Gaussian process priors on the latent functions defining the IRFs. This allows us to simultaneously relax assumptions about the shape of the IRFs while preserving the ability to estimate latent traits. This in turn allows us to easily extend the model to further tasks such as active learning. GPIRT therefore provides a simple and intuitive solution to several longstanding problems in the IRT literature.
150 - Yiran Xing , Zai Shi , Zhao Meng 2021
We present Knowledge Enhanced Multimodal BART (KM-BART), which is a Transformer-based sequence-to-sequence model capable of reasoning about commonsense knowledge from multimodal inputs of images and texts. We adapt the generative BART architecture to a multimodal model with visual and textual inputs. We further develop novel pretraining tasks to improve the model performance on the Visual Commonsense Generation (VCG) task. In particular, our pretraining task of Knowledge-based Commonsense Generation (KCG) boosts model performance on the VCG task by leveraging commonsense knowledge from a large language model pretrained on external commonsense knowledge graphs. To the best of our knowledge, we are the first to propose a dedicated task for improving model performance on the VCG task. Experimental results show that our model reaches state-of-the-art performance on the VCG task by applying these novel pretraining tasks.
158 - Veronika Rockova 2019
Few methods in Bayesian non-parametric statistics/ machine learning have received as much attention as Bayesian Additive Regression Trees (BART). While BART is now routinely performed for prediction tasks, its theoretical properties began to be understood only very recently. In this work, we continue the theoretical investigation of BART initiated by Rockova and van der Pas (2017). In particular, we study the Bernstein-von Mises (BvM) phenomenon (i.e. asymptotic normality) for smooth linear functionals of the regression surface within the framework of non-parametric regression with fixed covariates. As with other adaptive priors, the BvM phenomenon may fail when the regularities of the functional and the truth are not compatible. To overcome the curse of adaptivity under hierarchical priors, we induce a self-similarity assumption to ensure convergence towards a single Gaussian distribution as opposed to a Gaussian mixture. Similar qualitative restrictions on the functional parameter are known to be necessary for adaptive inference. Many machine learning methods lack coherent probabilistic mechanisms for gauging uncertainty. BART readily provides such quantification via posterior credible sets. The BvM theorem implies that the credible sets are also confidence regions with the same asymptotic coverage. This paper presents the first asymptotic normality result for BART priors, providing another piece of evidence that BART is a valid tool from a frequentist point of view.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا