No Arabic abstract
The local structures of 122-type paradium arsenides, namely BaPd$_2$As$_2$ and SrPd$_2$As$_2$, are examined by As K-edge extended x-ray absorption fine structure measurements to find a possible correlation between the variation of their superconducting transition temperature and the local structure. The local atomic distances are found to be consistent with average distances measured by diffraction techniques. The temperature dependence of mean square relative displacements reveal that, while BaPd$_2$As$_2$ is characterized by a local As-Pd soft mode, albeit with larger atomic disorder, SrPd$_2$As$_2$ shows anomalous As-Pd correlations with a kink at $sim$160 K due to hardening by raising temperature. We have discussed implications of these results and possible mechanism of differing superconducting transition temperature in relation with the structural instability.
$^{57}$Fe Mossbauer spectra at different temperatures between $sim 5$ K and $sim 300$ K were measured on an oriented mosaic of single crystals of CaKFe$_4$As$_4$ . The data indicate that CaKFe$_4$As$_4$ is a well formed compound with narrow spectral lines, no traces of other, Fe - containing, secondary phases in the spectra and no static magnetic order. There is no discernible feature at the superconducting transition temperature in any of the hyperfine parameters. The temperature dependence of the quadrupole splitting approximately follows the empirical $T^{3/2}$ law. The hyperfine parameters of CaKFe$_4$As$_4$ are compared with those for KFe$_2$As$_2$ measured in this work, and the literature data for CaFe$_2$As$_2$, and were found to be in between those for these two, ordered, 122 compounds, in agreement with the gross view of CaKFe$_4$As$_4$ as a structural analog of KFe$_2$As$_2$ and CaFe$_2$As$_2$ that has alternating Ca - and K - layers in the structure.
We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
The higher order topological insulator (HOTI) has enticed enormous research interests owing to its novelty in supporting gapless states along the hinges of the crystal. Despite several theoretical predictions, enough experimental confirmation of HOTI state in crystalline solids is still lacking. It has been well known that interplay between topology and magnetism can give rise to various magnetic topological states including HOTI and Axion insulator states. Here using the high-resolution angle-resolved photoemission spectroscopy (ARPES) combined with the first-principles calculations, we report a systematic study on the electronic band topology across the magnetic phase transition in EuIn2As2 which possesses an antiferromagnetic ground state below 16 K. Antiferromagnetic EuIn2As2 has been predicted to host both the Axion insulator and HOTI phase. Our experimental results show the clear signature of the evolution of the topological state across the magnetic transition. Our study thus especially suited to understand the interaction of higher order topology with magnetism in materials.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
The antiferromagnet CaFe$_2$As$_2$ does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibility under quasi-hydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized, with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity.