Enhancing Geometric Deep Learning via Graph Filter Deconvolution


Abstract in English

In this paper, we incorporate a graph filter deconvolution step into the classical geometric convolutional neural network pipeline. More precisely, under the assumption that the graph domain plays a role in the generation of the observed graph signals, we pre-process every signal by passing it through a sparse deconvolution operation governed by a pre-specified filter bank. This deconvolution operation is formulated as a group-sparse recovery problem, and convex relaxations that can be solved efficiently are put forth. The deconvolved signals are then fed into the geometric convolutional neural network, yielding better classification performance than their unprocessed counterparts. Numerical experiments showcase the effectiveness of the deconvolution step on classification tasks on both synthetic and real-world settings.

Download